Appunti sull'utilizzo di ANSYS 12.1

Slide realizzate sulla base delle lezioni dell'Ing. Luca Cortese

(Dipartimento di Meccanica ed Aeronautica - Facoltà di Ingegneria Civile ed Industriale - Università degli studi di Roma "La Sapienza").

Anno Accademico 2011/12.

Introduzione (ANSYS 12.1)

Le presenti slide hanno tratto origine da un insieme di appunti presi durante il corso di *Progettazione agli Elementi Finiti* tenuto dall'Ing. Luca Cortese (del Dipartimento di Meccanica ed Aeronautica della Sapienza) attraverso la versione accademica del software ANSYS 12.1.

Lo scopo principale è stato quello di creare una semplice guida utile all'apprendimento dei principali strumenti che ANSYS mette a disposizione, soprattutto nel caso di un utente che si avvicini per la priva volta ad un software di analisi strutturale.

Gli appunti sono organizzati in esercitazioni successive, ognuna della quali aggiunge nuovi concetti nell'utilizzo del programma. Procedendo nelle esercitazioni molti concetti saranno dati per acquisiti e l'attenzione sarà poste sulle novità introdotte dall'esercitazione corrente.

In nessun modo questa semplice guida vuole sostituirsi ad un manuale o ad un libro di testo, che sicuramente sarà più completo ed esaustivo.

Daniele Cortis

Rev. 2 (Novembre 2013)

Indice degli argomenti (Esercitazioni)

Esercitazione N.1 – Trave piana non rettilinea con carico distribuito

Esercitazione N.2 – Trave nello spazio con carico concentrato

Esercitazione N.3 – Struttura portante di un capannone industriale in acciaio

Esercitazione N.4 – Scripting: trave piana, carico variabile

Esercitazione N.5 – Piastra con foro, fattore di intaglio

Esercitazione N.6 – Trave inflessa in campo plastico, tensioni residue

Esercitazione N.7 – Simulazione elasto-plastica della prova di trazione su provino cilindrico

Indice degli argomenti (Esercitazioni)

Esercitazione N.8 – Progetto di un dissipatore per CPU in ventilazione forzata

Esercitazione N.9 – Paletta di turbina aeronautica, analisi termo-strutturale

Esercitazione N.10 – Verifica attacco telaio

(Braccetto sospensione per autoveicolo FSAE)

Esercitazione N.11 – Strutture a spessore sottile, elementi SHELL

Esercitazione N.12 – Ottimizzazione di progetto

Esercitazione N.13 – Analisi modale e risposta dinamica di una trave rastremata

APPENDICE – Materiali Ortotropi (Compositi)

Esercitazione N.1 Trave piana non rettilinea con carico distribuito

Determinare le caratteristiche di sollecitazione della struttura isostatica rappresentata in figura soggetta ad un carico distribuito uniforme sul tratto CD pari a *w*.

Esercitazione N.1

Trave piana non rettilinea con carico distribuito

New:

- Elemento trave 2d.
- Definizione real constants per trave 2d.
- Definizione materiale lineare elastico.
- Modellazione keypoints, linee.
- Granularità e impostazioni di discretizzazione.
- Applicazione vincoli, soluzione con carichi concentrati e distribuiti.
- Opzioni standard di soluzione statica con ipotesi di piccoli spostamenti.
- Post-processing, visualizzazioni grandezze di interesse, deformata, campo di spostamenti.
- Definizione altre grandezze di interesse mediante element table.
- Visualizzazione caratteristiche di sollecitazione.

Esercitazione N.1 (Passi preliminari)

ANSYS Multiphysics Utility Menu	And in case of the local division of the loc
<u>File Select List Plot Plot</u>	t <u>C</u> trls <u>W</u> orkPlane Pa <u>r</u> ame
Clear & Start New	剄
Change Jobname	P
Change Directory Change Title	
Resume Jobname.db Resume from	
Save as Jobname.db Save as Write DB log file	NODES

Change Jobname: una volta avviato ANSYS Mechanical APDL è possibile modificare il nome da assegnare al file di lavoro. Se questa operazione non viene effettuata il programma utilizzerà di default il nome **file.db**

Change Directory: Si consiglia di creare sempre una cartella dedicata in cui andranno salvati tutti i file del lavoro.

Raise Hidden: questo comando mostra le finestre di ANSYS eventualmente nascoste, che finiscono coperte da altre finestre durante le operazioni.

Esercitazione N.1 (Passi preliminari)

<u>F</u> ile	<u>S</u> elect	<u>L</u> ist	<u>P</u> lot	Plot <u>C</u> trls	<u>W</u> o
CI CI CI CI	ear & Sta nange Jo nange Di nange Tit	art Ne bnam rector le	w ie y		POV
Re Re	esume Jo esume fro	obnan om	ne.db		
Sa Sa	ave as Jo ave as	bnam	ne.db		

<u>F</u> ile	<u>S</u> elect	<u>L</u> ist	<u>P</u> lot	Plot <u>C</u> trls	
CI	ear & St	art Ne	W	圏	
Cl	hange Jo	bnam	ie	P	
Cl	Change Directory				
Cl	hange Tit	tle			
Re	esume Jo	obnan	ne.db		
Re	esume fro	om			

Save as Jobname.db: come salvare un file

Resume Jobname.db: come aprire un file salvato

Esercitazione N.1 (Impostazione ELEMENTO)

Esercitazione N.1 (Impostazione ELEMENTO)

Element Types			
Defined Element Types:	▲ Library of Element Types		
	Library of Element Types	Structural Mass Link Beam Pipe Solid Shell Solid-Shell 2D elastic 3 plastic 3 tapered 54 3D finite strain 2 node 118 2D elastic 3 tapered 54 3D finite strain 2 node 118	
	Element type reference number	1	
	OK Apply	Cancel H	elp
Add	Options Delete		
Close	Help		

Beam (trave) 2D (piana) elastic: trave piana con comportamento elastico (BEAM3)

Esercitazione N.1 (Impostazione ELEMENTO)

Defined Element Types: Type 1 BEAM3 Questa opzione serve per includere o meno dei punti
intermedi nell'elemento dovena BEAM3 element type options
dell'analisi (oltre ai nodi) Options for BEAM3, Element Type Ref. No. 1
Member force + moment output K6 Include output
Output at extra intermed pts K9 Include output
OK Cancel Help
Add Options Delete
Ontions: onzioni configurabili per l'elemento BEAM3
epiens. Opzieni connigorabili per reletione dell'autout delle seluzione i memoriali

In questo caso viene scelto di includere nell'output della soluzione i momenti e forze «Include output».

Esercitazione N.1 (Impostazione COSTANTI)

ANSYS Main Menu		
■ Preferences □ Preprocessor	Real Constants	×
Element Type Real Constants Add/Edit/Delete	Defined Real Constant Sets	Element Type for Real Constants
 ➡ Thickness Func ➡ Material Props ➡ Sections ➡ Modeling 		Choose element type: Type 1 BEAM3
 ■ Meshing ■ Checking Ctrls ■ Numbering Ctrls ■ Archive Model 		Real Constants for BEAM3
 		Cross-sectional area AREAArea moment of inertia IZZ Total beam height HEIGHT Shear deflection constant SHEARZ
 	Add Edit Del	Added mass/unit length ADDMAS
Preprocessor – Real Con auesto comando serve	n stants – Add/Edit/Delete: per impostare le costanti d	Apply Cancel Help
geometria dell'element sezione ecc.	o trave: area, momento d	l'inerzia,

Esercitazione N.1 (Impostazione COSTANTI)

Real Constants for BEAM3	×
Element Type Reference No. 1	
Real Constant Set No.	1
Cross-sectional area AREA	3.14*0.05**2/4
Area moment of inertia IZZ	3.14*0.05**4/64
Total beam height HEIGHT	0.05
Shear deflection constant SHEARZ	0
Initial strain ISTRN	0
Added mass/unit length ADDMAS	0
OK Apply Cancel	Help

Come inserire i valori: all'interno dei campi è possibile inserire direttamente i valori delle costanti, altrimenti è possibile scrivere direttamente le formule per il calcolo automatico.

NB: per esempio l'elevamento a potenza si scrive con la seguente notazione: $0.05^2 = 0.05^{**}2$

ANSYS Main Menu	
 ■ Preferences ■ Preprocessor 	1 NODES
Element Type Deal Constants	▲ Define Material Model Behavior
Real Constants Material Props	Material Edit Favorite Help
Material Library	Material Models Defined Material Models Available
 Temperature Units Electromag Units Material Models Convert ALPx Change Mat Num Failure Criteria Write to File Read from File Sections Modeling Meshing Checking Ctrls Numbering Ctrls Archive Model 	 Material Model Number 1 Material Model Number 1 Favorites Structural Linear Elastic Sotropic Orthotropic Anisotropic Anisotropic Nonlinear Density Thermal Expansion Damping Eriction Coofficient

Material Props – Materiale Models: questo comando serve per impostare le proprietà del materiale. Nel nostro caso strutturale, lineare, elastico, isotropo.

PRXY: coefficiente di Poisson (0.3)

Create KPs on V	WP		
@ Pick	C Unpick		
Count =	: 0		
Maximum =	1000		
Minimum =	- 1		
WPX =			
Y =	:		
Global X =	:		
Y =			
Z =			
C WP Coor	rdinates		
Global	Cartesian		
coordinate punti			
OK	Apply		
Reset	Cancel		
Help			

Modelling – Create – Keypoints – On Working Plane

Inserimento progressivo delle coordinate dei punti che la nostra trave. Successivamente «Apply».

Nel nostro caso, le coordinate in un piano 2D dei «nodi» della trave saranno:

A (0,0,0)

B (1,0,0)

C (1,-1,0)

D (2,-1,0)

La coordinata Z è nulla, perché siamo nel piano.

Create Straight	Line		
@ Pick	C Unpick		
© Single C Polygon C Loop	C Box C Circle		
Count = Maximum = Minimum = KeyP No. = C List of C Min, Ma	= 0 = 2 = 2 = ! ! Items ax, Inc		
OK Apply			
Reset	Cancel		
Pick All Help			

Modelling – Create – Lines – Straight Line

Creazione progressiva delle linee che uniscono i punti inseriti.

Usando la funziona «pick» è possibile unire i punti con dei semplici click del mouse.

Altrimenti è necessario scrivere i numeri dei punti (1,2, ecc.) e fare «Apply».

Linea A-B (1,2)

Linea B-C (2,3)

Linea C-D (3,4)

ANSYS Multiphysics Litility Me	nu (esercitazione 1)	1			
Eile Select List Plot D D D D D D ANSYS Toolbar SAVE_DB RESUM_D	Plot <u>C</u> trls <u>W</u> orkPlane Pa <u>r</u> amete Pan Zoom Rotate View Settings • Numbering Symbols		Per visualizzare i riteri dei punti bisogna ar Numering e spuntare	imenti delle l ndare su Plot e le prime vo	inee e Ctrls – oci.
ANSYS Main Menu	Style •		A Plot Numbering Controls		×
Preferences	Font Controls		[/PNUM] Plot Numbering Controls		
LINE NUM		-	KP Keypoint numbers	⊡ On	
			LINE Line numbers	🔽 On	
Y			AREA Area numbers	C Off	
	X L1	2	VOLU Volume numbers	C Off	
			NODE Node numbers	C Off	
			Elem / Attrib numbering	No numberin	g 🔽
			TABN Table Names	Coff	
			SVAL Numeric contour values	C Off	
			[/NUM] Numbering shown with	Colors & nun	nbers 💌
			[/REPLOT] Replot upon OK/Apply?	Replot	-
			OK Apply	Cancel	Help
		3	L3	4	

Esercitazione N.1 (Impostazione della MESH)

ANSYS Main Menu Meshing – Size Cntrls – Manual Size – Line – All Lines Preferences Preprocessor questo modo si avvia la procedura In di Element Type discretizzazione della geometria: si impostano Real Constants gli Material Props elementi trave BFAM 3. Modeling □ Meshing Sono presenti due modalità di discretizzazione: Mesh Attributes Impostazione della MeshTool Impostazione del numeri lunghezza degli Size Cntrls elementi in cui suddividere elementi in cui sarà ManualSize la trave (25) suddivisa la trave Global Areas Element Sizes on All Selected Lines Lines [LESIZE] Element sizes on all selected lines All Lines SIZE Element edge length NDIV No. of element divisions (NDIV is used only if SIZE is blank or zero) KYNDIV SIZE, NDIV can be changed Yes SPACE Spacing ratio Show more options □ No

OK

Cancel

Help

Esercitazione N.1 (Impostazione della MESH)

Esercitazione N.1 (Impostazione della MESH)

Plotctrl – Numering:

Selezionare "element number" e "colors only" per visualizzare gli elementi della mesh con colori differenti sul workplane.

	Plot Numbering Controls	
ELEMENTS	[/PNUM] Plot Numbering Controls	
ELEM NOM	KP Keypoint numbers	🔽 On
	LINE Line numbers	l∕ On
	AREA Area numbers	C Off
	VOLU Volume numbers	C Off
	NODE Node numbers	C Off
	Elem / Attrib numbering	Element numbers
	TABN Table Names	C Off
	SVAL Numeric contour values	C Off
	[/NUM] Numbering shown with	Colors only
	[/REPLOT] Replot upon OK/Apply?	Replot
	ОК Apply	Cancel Help

NB: I vincoli ed i carichi si possono applicare anche sulla geometria e poi il software li applica agli elementi in automatico.

Il vantaggio è che posso cambiare la discretizzazione, e se i carichi ed i vincoli sono sulla geometria non perdo i dati che ho impostato.

Selezionare il nodo

Impostazione del vincolo di cerniera (gradi di vincolo)

Spostamento imposto: value displacement "0" (nessun cedimento vincolare)

Risultato impostazione dei vincoli

Loads – Define loads – Apply – Structural – Pressure – On Beams Selezionare gli elementi su cui applicare il carico (es. comando box). Valido solo in caso di travi.

Impostazione dei carichi:

- Se inserisco un valore solo sul nodo i imposto un carico uniforme
- Se inserisco un valore sul nodo **i** e sul nodo **j**, si può impostare ad esempio un carico triangolare.

MAR 17 2012		
Apply PRES on Beams		
[SFBEAM] Apply Pressure (PRES) on Beam Elements		+ 10000
LKEY Load key	1	10000
VALI Pressure value at node I	10000	oppure
VALJ Pressure value at node J		-
(leave blank for uniform pressure)		- 10000
Optional offsets for pressure load		
IOFFST Offset from I node		a seconda dei casi,
JOFFST Offset from J node		bisogna provare,
LENRAT Load offset in terms of	Longth units	dipende dal
		riferimento!
OK Apply Cancel	Help	

Risultato impostazione del carico distribuito

Esercitazione N.1 (Calcolo della SOLUZIONE)

Solution: tramite questo menu è possibile impostare i paramenti della soluzione (es. analisi elastica lineare, ecc.) I valori di default per nostro caso vanno bene.

Solution – Solve – Current LS: calcolo della soluzione. I Risultati vengono salvati all'interno del file .rst

ANOVO Main Manu	
ANSYS Main Menu	
Preferences	NB: prima di calcolare una nuova soluzione, bisoana SEMPRE uscire dal
Preprocessor	
□ Solution	File menu dei solutore.
Define Loads	SULUTION OFTIONS
Load Step Opts	PROBLEM DIMENSIONALITY
BE Management (Besults Treaking)	ANALYSIS TYPE
	LOAD STEP OPTIONS
Partial Solu	NUMBER OF SUBSTEPS
Manual Rezoning	STEP CHANGE BOUNDARY CONDITIONS NO PRINT OUTPUT CONTROLS NO PRINTOUT
⊞ Multi-field Set Up	DATABASE OUTPUT CONTROLS
ADAMS Connecti	FUK THE LHST SUBSTEP
Diagnostics	Note 23
🖩 Unabridged Menu	
General Postproc	
TimeHist Postpro	
🗉 Topological Opt	
ROM Tool	Class
DesignXplorer	Close
🗉 Design Opt	
Drob Dooign	

General Postproc - Plot Results - Deformed Shape (Visualizzazione della deformata)

General Postproc – Plot Results – Contour Plot – Nodal Solu (Visualizzazione dei valori della soluzione ai nodi della struttura)

General Postproc – Quesy results – Subgrid Solu

(Questo comando serve per visualizzare lo spostamento del singolo elemento con cui ho realizzato la mesh lungo l'asse Y)

 	Query Subgrid Solution Data	
□ Query Results	Query Subgrid Solution Data	
Element Solu	Item,Comp Item to be viewed	DOF solution
Subgrid Solu		Stress UY
Options for Outp		Strain-total
Results Viewer		Strain-elastic Botation BOTX T
Write PGR File		Strain-thermal
In Nodal Calcs		Strain-plastic 👻 UY
Element Table		
Path Operations		
Surface Operations	ОК	Cancel Help
Check Elem Shape		

Selezione attraverso il comando Pick/UnPick degli elementi di cui mi interessa sapere lo spostamento

SF. NORMALE, TAGLIO, MOMENTO: per visualizzare l'andamento del momento, del taglio e dello sforzo normale, è necessario mappare i risultati in una tabella. Questa procedura è necessaria solo per gli elementi monodimensionali.

Element Table – Define Table – Add: bisogna inserire i codici che si riferiscono allo sforzo normale, al taglio ed al momento. Per trovare questi codici bisogna cercare nell'HELP di Elemento (BEAM3): ogni elemento avrà la sua serie di codici.

ANSYS Main Menu		
Preferences Preprocessor	T Element Table Data	Define Additional Element Table Items
 B Solution □ General Postproc 	Currently Defined Data and Status:	[AVPRIN] Eff NU for EQV strain
I Data & File Opts I Results Summary	NONE DEFINED	[ETABLE] Define Additional Element Table Items Lab User label for item
 Read Results Failure Criteria Plot Results List Results Query Results Options for Outp Results Viewer Write PGR File Nodal Calcs Element Table Define Table Plot Elem Table List Elem Table List Elem Table Abs Value Option 		Item, Comp Results data item DOF solution Translation UX Stress Strain-total UY Strain-mech+thrm Nodal force data Energy Energy Error estimation Translation UX (For "By sequence num", enter sequence no. in Selection box. See Table 4.xx-3 Translation UX OK Apply Cancel Help
Add Items	Add	Update Delete
 ➡ Find Maximum ➡ Find Minimum ➡ Exponentiate ➡ Cross Product 	Close	Help

Si cerca nell'Help BEAN	3 MFOR)	K = SF. Normal	e MFORY	= Taglio	MFORZ= /	Nomento	
		1	/		/		
	_			_			
ANSYS 12.1 Help		-					
File Favorites distory Help							
Contents Search Index		Dath ://		L Element Libra	Find in Dager	F	
Kowword Storeh Bagos Es	und: 22		Element Reference II		Fild in Page.	Ľ	
Keyword Starch Pages Fo	Help: ANS	SHelp BEAM3 +					
Beam3 Search	Table 3.2 F	AM3 Item and Sequence	e Numvers (KEYOPT)	9) = 0)			
Search Options					Command Innet		1
	Out	ut Quantity Name		ETABLE and SOL	Command input	1	-
Name Hits Book		an guainny name	Item		1	J	
Theory Reference 74 Theory Refer			S		1	4	ſ
Element Refere 64 Element Refe	erenc				<u> '</u>	<u> </u>	r
1.14. Abl reviati 51 Verification M	anua		LS	-	2	5	
14.23. AM23 51 Theory Refer	ence		LS	-	3	6	
BEAM3 46 Element Refe	erenc						r
BEAM54 46 Element Refe	erenc EPELD R		LEPEL	-	1	4	
2.15. Geometric 29 Element Refe	EPELEYT		LEPEL	-	2	5	
1.1. Building the 23 Basic Analys	IS GU					-	ŕ
CONTA171 20 Element Boff	EPEL BYB	3	LEPEL	-	3	6	1
2.2 Solution Ou 15 Element Ref	EPTHDIR		LEPTH	-	1	4	
7.2. Reviewing 15 Basic Analys	is Gu			_			ť
VM41 15 Verification M	anua		цьлін	-	2	5	
VM235 14 Verification M	anua EPT IBYE	3	LEPTH	-	3	6	
5.6. Sample Re 13 Structural An	alysis						t l
BEAM23 12 Element Refe	erenc		LEPTH	/	-	-	
VM177 12 Verification M	anua SM X		NMISC	-	1	3	
2.3. Limitations 11 Modeling and	Mes		NINIDO.				t
VM180 11 Verification M	anua		NMISC	-	2	4	
3. Element Cha 10 Element Refe	MFORX		SMISC	-	1	7	
VM40 10 Verification M	anua		0.000	_			ť
VM77 9 Verification M	anua		SMISC	-	2	8	
VM50 7 Verification M	anua		SMISC	-	6	12	

▲ ANSYS 12: Help File Favortils History Help Contents Search Pages Found. 32 Keyword Search Pages Found. 32 V Search Pages Found. 32 V Search Options Name Eth BLE and ESQL Command Input SDIR LS 1 11.4. At previation SDIR LS 1 12.4. Streaking S	cerca nell'Help BEAM3	Codice «SMISC,2	» e «SMISC,8» j	per i valori	i del Taglio	o nei nodi l d	e J
File Favoritis History Help Contents Search Index Reyword Search Pages Found: 32 Beam3 Search Options Nature Contents Beam3 Search Options Nature Output Quantity Name Contents (EVOPT(9)=0) Search Options Nature Output Quantity Name Colspan="2">Command Input Nature Command Input Nature Command Reference Element Reference Element Reference Element Reference EPELDIR LEFEL 1 LEPEL 1 1 A Search Options Output Quantity Name Command Input Lis 1 Difference Element Reference Element Reference 2 Command Input Lis Search Colspan= 2	ANSYS 12.1 Help	-	_	_	_		
Contents Search Index Image: Im	File Favorites History Help						
Keyword Search Pages Found: 32 Beam3 Search Image: Common Search	Contents Search Index		. // Element Beference // I	Element Libra	Eind in Page:		
Name Endet Beam3 Search Verification Search Options Image Image Image Image <	Kewood Search Pages Found: 22				Find in Fage.		
Beam3 Search Options Table 3.2 BEAM3 Item and Se Juence Numbers (KEYOPT(9) = 0) Table 3.2 BEAM3 Item and Se Juence Numbers (KEYOPT(9) = 0) Dutput Guantity Name	Reyword Search Tages Found. 32	Help: ANSYS Help BEAM3	+				
V Searc Options ExtBLE and ESOL Command Input Name Hits Book 3.2. Pitto [al St, 121] Element Reference 1 Theory Brence 74 Theory Reference 1 4 Element Reference 64 Element Reference 1 4 SBYT LS 1 4 SBYT LS 2 5 BEAM3 46 Element Reference 3 6 EPELDIR LEPEL 1 4 215. Geometric. 29 Element Reference 11. Building the. 23 Basic Analysis Gu EPELDIR LEPEL 1 4 CONTAIT 20 Element Reference 2 5 5 5 22. Solution Ou 15 Element Reference 2 5 5 5 22. Solution Ou 15 Element Reference 1 4 5 5 22. Solution Ou 15 Element Reference 1 8 1 1	Beam3 Search 🕢	Table 3.2 BEAM3 Item and Se us	ence Numbers (KEYOPT(9	= 0)			
Name Hits Book 3.2. Pittofial Su., 121 Element Reference I J Theory Erference 74 Theory Reference I J Element Reference, 64 Element Reference I J 11.4. At previatu., 51 Verification Manua SBYT LS 1 4 SBYT LS 3 6 BEAM3 6 BEAM3 6 BEAM3 46 Element Reference BYB LS 3 6 SBYB LS 3 6 BEAM3 6 BEAM3 6 BEAM3 46 Element Referenc EPELDIR LEPEL 1 4 2 5 215. Geometric. 29 Beinent Referenc EPELBYB LEF Non sono stati inseriti punti intermedi nell'elemento BEAM3 in cui calcolare la soluzione, quindi scelgo la tabella con VM41 15 Verification Manua EPTHDIR LEF Nulsc 1 3 3 SAM23 14 Verification Manua SMIN Nulsc 1 3 3 3 SM11 Veri	▼ Searc Options			ET BLE and ESOL	Command Input		٦
3.2. Fritogrand Sull, 121 Element Reference 74 Theory, Fefrence 74 Theory Reference 74 Element Reference, 64 Element Reference 1.14, Ab previatil 51 95.2. Fritogrand Sull, 121 Structural Reference 1.14, Ab previatil 51 95.2. Fritogrand Sull, 121 Structural Reference 1.14, Ab previatil 51 95.2. Fritogrand Sull, 121 Structural Analysis Gu 95.2. Fritogrand Sull, 121 Structural Analysis Gu 95.1. Sample Re 13 95.2. Fritogrand Sull, 121 Structural Analysis Gu 95.1. Sample Re 14 95.1. Sample Re 15 95.1. Sample Re 14 95.1. Sample Re 15 95.1. Sample Re 14 95.1. Sample Re 10 95.1. Sample Re 10 95.1. Sample Re 10 95.1. Sample Re 10 95.1. S	Narie Hits Book	Output Quantity Name	Item	E	I	J	
Element Reference 64 Element Reference 1.1.4.23 GrAM2351 Verification Manual 14.23 GrAM2351 Theory Reference BEAM3 46 Element Reference 0.1.1.8.uiding the23 Basic Analysis Gu 1.1.8.uiding the23 Basic Analysis Gu 2.2. Solution Ou15 Element Reference 2.2. Solution Ou15 Element Reference 2.2. Solution Ou15 Basic Analysis Gu VM41 15 Verification Manual VM235 14 Verification Manual VM235 14 Verification Manual SBEAM23 12 Element Reference VM180 11 Verification Manual 3. Element Cha10 Element Reference VM12 10 Verification Manual 3. Element Cha10 Element Reference VM2 10 Verification Manual MV40 10 Verification Manual WM10 10 Verification Manual WM12 10 Verification Manual MM0MZ SMISC 2 MM0MZ SMIS	Theory Reference 74 Theory Reference	SDIR	1.8		1	4	Ē
1.1.4. At previati 51 Verification Manua 14.23.172AM23 51 Theory Reference BEAM3 46 Element Reference BEAM3 46 Element Reference 21.5. Geometric 29 Element Reference 2.15. Geometric 29 Element Reference 2.2. Solution Ou 15 Element Reference 2.2. Solution Ou 15 Basic Analysis Gu VM41 15 Verification Manua VM235 14 Verification Manua VM235 14 Verification Manua VM235 14 Verification Manua VM177 12 Verification Manua VM180 11 Verification Manua VM180 11 Verification Manua VM180 11 Verification Manua VM180 11 Verification Manua VM170 9 Verification Manua	Element Refere 64 Element Referenc	OD III			<u> </u> .		_
14.23 Str2AM23 51 Theory Reference BEAM3 46 Element Reference BEAM3 46 Element Reference 2.15. Geometric. 29 Element Reference 2.15. Geometric. 29 Element Reference CONTAI71 20 Element Reference 2.2. Solution Ou 15 Element Reference 7.2. Reviewing 15 Basic Analysis Gu VM41 15 Verification Manua 56. Sample Re 13 Structural Analysis BEAM23 12 EPTHBYB Ef PTHBYB EF VM235 14 Verification Manua EPTHBYB SEAM23 12 EPTHBYB Ef EPTHBYB EF VM177 12 Verification Manua 3. Element Cha 10 VM40 10 Verification Manua VM40 10 Verification Manua VM40 10 Verification Manua VM40 10 Verification Manua	1.14. Ab previati 51 Verification Manua	SBYT	LS		2	5	
BEAM3 46 Element Referenc 215. Geometric 29 Element Referenc 2.15. Geometric 1 4 2.15. Geometric 29 Element Referenc 2.2. Solution Ou 1 4 ANSTOASAS 22 Command Referenc CONTAT/1 20 Element Referenc 2.2. Solution Ou 15 Element Referenc CONTAT/1 20 Element Referenc PELBYB Lef Non sono stati inseriti punti intermedi nell'elemento BEAM3 in cui calcolare la soluzione, quindi scelgo la tabella con VM235 14 Verification Manua 5.6. Sample Re 13 Structural Analysis BEAM23 EPTHBYT Lef BEAM3 1 Verification Manua 3. Element Cha 11 Wodeling and Mes MIN MISC 1 3 VM120 10 Verification Manua 3. Element Cha 10 Verification Manua 4.0 MFORX SMIC 1 7 VM20 10 Verification Manua 3. Element Cha MFORX SMIC 2 8	14.23. ZAM23 51 Theory Reference	SBYB	18		3	6	
BEAM54 46 Element Reference 2.15. Geometric 29 Element Reference 1.1. Building the 23 Basic Analysis Gu ANSTOASAS 22 Command Reference 2.2. Solution Ou 15 Element Reference 2.2. Solution Ou 15 Element Reference 7.2. Reviewing 15 Basic Analysis Gu VM41 15 Verification Manua VM235 14 Verification Manua VM235 14 Verification Manua S.6. Sample Re 13 Structural Analysis BEAM23 12 Element Reference VM177 12 Verification Manua 2.3. Limitations 11 Modeling and Mes VM180 11 Verification Manua 3. Element Cha 10 Element Reference VM2 10 Verification Manua 3. Element Cha 10 Verification Manua W400 10 Verification Manua VM40 10 Verification Manua VM77 9 Verification Manua <	BEAM3 46 Element Referenc	0010					-
2.15. Geometric	BEAM54 46 Element Referenc	EPELDIR	LEPEL	-	1	4	
1.1. Building the	2.15. Geometric 29 Element Referenc	EPEL BYT	LEPEL	-	2	5	
ANSITOASAS 22 Command Refere CONTAT71 20 Element Referenc 2.2. Solution Ou 15 Element Referenc 7.2. Reviewing 15 Basic Analysis Gu VM41 15 Verification Manua VM235 14 Verification Manua VM235 14 Verification Manua S6. Sample Re 13 Structural Analysis BEAM23 12 Element Referenc VM177 12 Verification Manua 2.3. Limitations 11 Modeling and Mes VM180 11 Verification Manua 3. Element Cha 10 Element Referenc VM2 10 Verification Manua VM40 10 Verification Manua VM77 9 Verification Manua VM76 7 Verification Manua	1.1. Building the 23 Basic Analysis Gu				1-		
CONTAINT 20 Element Reference 2.2. Solution Ou 15 Element Reference 7.2. Reviewing 15 Basic Analysis Gu VM41 15 Verification Manua VM235 14 Verification Manua 5.6. Sample Re 13 Structural Analysis BEAM23 12 Element Referenc VM177 12 Verification Manua 3. Element Cha 10 Element Referenc VM2 10 Verification Manua VM40 10 Verification Manua VM40 10 Verification Manua VM77 9 Verification Manua VM50 7 Verification Manua	ANSTOASAS 22 Command Refere	EPELBYB	LEF Non sono	stati inser	iti punti in	termedi	
2.2. solution of the reference of the service of t	CONTAT/1 20 Element Reference						
Product Notice Participation Manual VM41 Product Notice Product Note Product Note <t< td=""><td>7.2. Reviewing 15 Resic Analysis Gu</td><td></td><td colspan="5">nell'elemento BEAM3 in cui calcolare la</td></t<>	7.2. Reviewing 15 Resic Analysis Gu		nell'elemento BEAM3 in cui calcolare la				
VM21 10 Vortification Manua VM235 14 Verification Manua 5.6. Sample Re 13 Structural Analysis BEAM23 12 Element Referenc VM177 12 Verification Manua 2.3. Limitations 11 Modeling and Mes VM180 11 Verification Manua 3. Element Cha 10 Element Referenc VM2 10 Verification Manua VM2 10 Verification Manua VM77 9 Verification Manua VM76 7 Verification Manua VM77 9 Verification Manua VM76 7 Verification Manua VM77 9 Verification Manua VM50 7 Verification Manua	VM41 15 Verification Manua	EPTHBYT	L ^{EF} soluzione, auindi scelao la tabella con				
Single Re 13 Structural Analysis BEAM23 12 Element Referenc VM177 12 Verification Manua 2.3. Limitations 11 Modeling and Mes VM180 11 Verification Manua 3. Element Cha 10 Element Referenc VM2 10 Verification Manua VM40 10 Verification Manua VM77 9 Verification Manua VM70 7 5 VM00M7 5 5 VM00M7 5 5 VM00M7 5 12	VM235 14 Verification Manua	ЕРТНВУВ	FF Kovpoint		- 0		
BEAM2312Element Referenc VM177LEPINAXLLEPTH7VM17712Verification Manua 2.3. Limitations 11Modeling and Mes VM180NMISC-13VM18011Verification Manua 3. Element Referenc VM210Verification Manua Verification Manua VM40NMISC-24VM210Verification Manua VM779Verification Manua VM77SMISC-17VM50728VM50728MMOM7SMISC-12	5.6. Sample Re 13 Structural Analysis		кеуропп	(KETOPI)	- 0.		
VM17712Verification Manua2.3. Limitations 11Modeling and MesVM18011Verification Manua3. Element Cha 10Element ReferencVM210Verification ManuaVM4010Verification ManuaVM779Verification ManuaVM779Verification ManuaVM50728VM5071010Verification ManuaVM779Verification ManuaVM779VM779VM779Verification ManuaVM50710Verification ManuaVM779Verification ManuaVM779Verification ManuaVM50710Verification ManuaVM5071012	BEAM23 12 Element Reference	EPINAXL	LEPTH	7	-	-	
2.3. Limitations 11 Modeling and Mes North Construction Manual North Construction Manual VM180 11 Verification Manual SMIN NNISC - 2 4 3. Element Cha 10 Element Referenct MFORX SMIC - 1 7 VM2 10 Verification Manual MFORX SMISC - 2 8 VM77 9 Verification Manual MMOMZ SMISC - 2 8	VM177 12 Verification Manua	SMAX	NAISC	-	1	3	
VM180 11 Verification Manua SMIN NILISC - 2 4 3. Element Cha 10 Element Referenc MFORX SNIC - 1 7 VM2 10 Verification Manua MFORX SNISC - 1 7 VM40 10 Verification Manua MFORY SMISC - 2 8 VM77 9 Verification Manua MMOMZ SMISC - 2 12	2.3. Limitations 11 Modeling and Mes				<u> </u>		-
3. Element Cha 10 Element Referenc VM2 10 Verification Manua VM40 10 Verification Manua VM77 9 Verification Manua VM50 7 SMISC - 2 8 VM50 7 Verification Manua MFORY SMISC - 2 12	VM180 11 Verification Manua	SMIN	NISC	-	2	4	
VM2 10 Verification Manua VM40 10 Verification Manua VM77 9 Verification Manua VM50 7	3. Element Cha 10 Element Referenc	MEORX	SN GC	-	1	7	
VM40 10 Verification Manua VM77 9 Verification Manua VM77 3 VM77 9 Verification Manua VM77 9 Verification Manua MM0M7 SMISC - 10	VM2 10 Verification Manua				<u> </u>		╡
VM// 9 Verification Manua MMOMZ SMISC - 6 12	VM4U 10 Verification Manua	MFORY	SMISC	-	2	8	
	VM77 9 Verification Manua	MMOMZ	SMISC	-	6	12	T .
Inserimento dei codici e delle Label

Currently Defined Data and Status:							
Label	ltem	Comp	Time Stamp	Status			
TAGLIO-I	SMIS	2	Time= 1.0000	(Current)			
TAGLIO-J	SMIS	8	Time= 1.0000	(Current)			
MOM-I	SMIS	6	Time= 1.0000	(Current)			
MOM-J	SMIS	12	Time= 1.0000	(Current)			

General Postproc – Plot Results – Contour Plot – Line Element Res (Plottaggio dei diagrammi delle sollecitazioni)

		A Plot Line-Element Results	
Plot Results		[PLLS] Plot Line-Element Result	
Deformed Shape		LabI Elem table item at node I	TAGLIO-I 🗨
Contour Plot		LabJ Elem table item at node J	TAGLIO-L
Nodal Solu		Fact Ontional cools factor	
Element Solu		Fact Optional scale factor	
Elem Table		KUND Items to be plotted on	
🖬 Line Elem Res			• Undeformed shape
Vector Plot			C Defermed above
Plot Path Item			C Deformed shape
Plot Results	F	Plot Line-Flement Results	
Deformed Shape		Not Line-Liement Nesuits	
Contour Plot		[PLLS] Plot Line-Element Result	
🖬 Nodal Solu		LabI Elem table item at node I	MOM-I
Element Solu		LabJ Elem table item at node J	MOM-L
Elem Table			
Line Elem Res		Fact Optional scale factor	1
Vector Plot		KUND Items to be plotted on	
Plot Path Item			Undeformed shape
Concrete Plot			C D formal have
ThinFilm			O Deformed snape
E List Results			
Query Results			
Options for Outp		OK Apply	Cancel Help
Results Viewer			
Write PGR File			
H Nodal ('alce			

General Postproc – Plot results – Contour Plot – Element Table

LIST – Results – selezionare quali risultati listare (es. Element Table Data)

<u>L</u> ist <u>P</u> lot Plot <u>C</u> trls	WorkPlane Parameters Macro
Files	
Status	N PRETAB Command
Keypoint Lines Areas Volumes Nodes	File File PRINT ELEMENT TABLE ITEMS PER ELEMENT ****** POST1 ELEMENT TABLE LISTING ****** STRT CURRENT CURRENT ELEM TRGLIO-I TRGLIO-J 1 -2500 0 -2500 0
Elements Components Parts Picked Entities +	1 2-350.0 -2500.0 [PRETAB] List Element Table Data 3 -2500.0 -2500.0 -2500.0 4 -2500.0 -2500.0 -2500.0 5 -2500.0 -2500.0 -2500.0 6 -2500.0 -2500.0 MOM-I 7 -2500.0 -2500.0 MOM-I 9 -2500.0 -2500.0 Items 1-10 GRP1
Properties Loads	10 -2500.0 -2500.0 11 -2500.0 -2500.0 12 -2500.0 -2500.0 13 -2500.0 -2500.0 14 -2500.0 -2500.0 14 -2500.0 -2500.0
Results	NOGALS 15 -2500.0 -2500.0 -2500.0 -2500.0 -2500.0
Other	Elemen 17 -2500.0 -2500.0
ement Solu	Superelem DOF Solu
em Table ne Elem Res or Plot	Reaction Solution Nodal Loads
Path Item crete Plot Film	Element Table Data Vector Data

VISUALIZZARE LE REAZIONI VINCOLARI

Plotcrtl – Symbols: all bc + reaction

oppure

List – Results – Reactions Solution

Esercitazione N.2 (Trave nello spazio con carico concentrato)

Verificare la struttura isostatica rappresentata in figura:

- Determinare le caratteristiche di sollecitazione.
- individuare lo stato tensionale nei punti critici.

- Verificare che nelle condizioni di esercizio la struttura possa resistere elasticamente con un coefficiente di sicurezza X=1.25.

Dati:

 $P = 75 \ kg$ $l_1 = 300 \ mm$ $l_2 = 180 \ mm$ $d = 16 \ mm$

E= 200000 MPa v=0.3 σv=800 MPa

> N.B. modellare la struttura con elementi *Beam*, e successivamente *Pipe*.

Esercitazione N.2

(Trave nello spazio con carico concentrato)

New:

- Elemento trave 3d, elemento pipe.
- Definizione sezione trasversale mediante real constants per trave 3d e pipe.
- Orientamento sezioni travi 3d.
- Definizione sezione trasversale mediante .. section
- Definizione grandezze di interesse mediante element table: visualizzazione caratteristiche di sollecitazione, sforzi assiali (flessione) e taglio (torsione), tensione equivalente secondo Von Mises, sia per l'elemento trave che pipe.
- Introduzione al linguaggio di scripting. Il salvataggio testuale.

Esercitazione N.2 (Impostazioni base)

- 1. Impostazione dell'elemento: l'elemento più comune per l'analisi delle travi nello spazio è il BEAM4, ma ha delle limitazioni (pensato per travi che lavorano puramente a flessione, ha problemi nella visualizzazione delle grandezze). Nel nostro caso si userà il BEAM44 (versione più generale del BEAM4), che gestisce anche le torsioni).
- 2. Impostazioni costanti: sono diverse per ogni elemento, il BEAM44 ne ha alcune specifiche
- 3. Impostazione materiale: uguale all'esercitazione N.1
- 4. Impostazione geometria: uguale all'esercitazione N.1
- 5. Creazione della mesh: uguale all'esercitazione N.1
- 6. Applicazione di carichi e vincoli: uguale all'esercitazione N.1

Esercitazione N.2 (Costanti BEAM 44)

N Real Constant Set Number 1, for BEAM44		
Element Type Reference No. 1		
Real Constant Set No.	1	
Constants 1-24 (basic set)		
Constants at node I (end 1)		
Cross-sectional area AREA1	3.14*16**2/4	
Z,Y moments of inertia IZ1 IY1	3.14*16**4/64 3.14*16**4/64	
Z,Y bottom thickness TKZB1 TKYB1	8 8	
Torsional moment of inertia IX1	3.14*16**4/32	
X,Y,Z offsets DX1 DY1 DZ1		
Z,Y top thickness TKZT1 TKYT1	8 8	
Constants at node J (end 2)		
	Shear defl const SHEARZ SHEARY	
	Constants 25-30 (for shear and torsional stresses)	
	Shear areas end 1 ARESZ1 ARESY1 3	3.14*16**2/4 3.14*16**2/4
	Shear areas end 2 ARESZ2 ARESY2	
	Torsional strs factor TSF1 TSF2	/(3.14*16**3/1
	Constants 31-36 (for shear offset and elastic foundation)	nodulo di resistenza a flessione
	Shear cntr offset 1 DSCZ1 DSCY1	
	Shear cntr offset 2 DSCZ2 DSCY2	
	Foundation stiffnesses EFSZ EFSY	

Esercitazione N.2 (Sollecitazioni)

Element Table – Define Table – Add: inserire i codici dei riferimenti per lo sforzo normale, il taglio ed il momento.

Per trovare tali codici bisogna cercarli nell'Help di elemento: nel nostro caso stiamo usando un elemento trave (BEAM44).

SMIN	NMISC	-	2	4
MFORX	SMISC	-	1	7
MFORY	SMISC	-	2	8
MFORZ	SMISC	-	3	9
ммомх	SMISC	-	4	10
MMOMY	SMISC	-	5	11
MMOMZ	SMISC	-	6	12
SXY	SMISC	-	13	16

1) Bisogna trovare i codici della σ e della τ nell'Help di elemento: nel nostro caso stiamo usando un elemento trave (BEAM44).

Successivamente sarà necessario impostare la relazione matematica:

$$\sigma_{eq} = \sqrt{\sigma^2 + 3\tau^2}$$

SMAX	NMISC	-	1	3
SMIN	NMISC	-	2	4
MFORX	SMISC	-	1	7
MFORY	STIISC	-	2	8
MFORZ	SMISC	-	3	9
ммомх	SMISC	-	4	10
ммому	SMISC	-	5	11
ммомz	SMISC	-	6	12
SXY	SMISC	-	13	16
SXZ	SMISC	-	14	17
SYZ 📕	SMISC	-	15	18

2) Elevamento a potenza di σ e della τ :

Genaral Postproc – Element Table – Multiply

			_			
Multiply Element Table Items [SMULT] LabR = (FACT1 * Lab1) * (FACT2 * Lab2) LabR User label for result				E' sufficiente moltiplicare i valori del nodo i-esimo (senza usare il j-esimo)		
FACT1 1st Factor 1 Lab1 1st Element table item SIGMA-I				Successivamente i valori compariranno anche nella		
FACT2 2nd Factor Lab2 2nd Element table item	1 SIGMA-I			Element Table insieme agli altri inseriti in precedenza.		
OK Apply	G		0	Time Ohmer Ohmer		
		Item	Comp	Time Stamp Status		
		NMIS	। २	Time= 1.0000 (Current)		
	TAUL	SMIS	15	Time= 1.0000 (Current)		
	TAU-J	SMIS	18	Time= 1.0000 (Current)		
	SQ	CALC	SMUL	Time= 1.0000 (Current)		
	TQ	CALC	SMUL	Time= 1.0000 (Current)		

3) Somma di σ^2 e della $3\tau^2$:

Genaral Postproc – Element Table – Add Items

[SADD] LabR = (FACT1 * Lab1) + (FACT2 * Lab2) + CONST					
LabR User label for result WQ					
FACT1 1st Factor 1					
Lab1 1st Element table item SQ 💌					
FACT2 2nd Factor 3					
Lab2 2nd Element table item					
CONST Constant					

E' sufficiente selezionare i valori elevati al quadrato inseriti precedentemente e moltiplicarli per eventuali coefficienti.

Successivamente i valori compariranno anche nella Element Table insieme agli altri inseriti in precedenza.

4) Radice di σ^2 + $3\tau^2$:

Genaral Postproc – Element Table – Radice exponenziate

Exponentiate Element Table Items	
[SEXP] LabR = (Lab1 ** EXP1) * (Lab2 ** EXP2)	
LabR User label for result	W
Lab1 1st Element table item	WQ
EXP1 1st Exponent	0,5
Lab2 2nd Element table item	- none - 💌
EXP2 2nd Exponent	1

E' sufficiente selezionare la somma dei valori e usare il coefficiente della radice quadrata (0.5) per l'esponente.

Successivamente i valori compariranno anche nella Element Table insieme agli altri inseriti in precedenza.

5) Sigma equivalente, risultato grafico:

General Postproc - Plot Results - Contour Plot - Line Element Res

Plot Line-Element Results		
[PLLS] Plot Line-Element Result		
LabI Elem table item at node I	W	
LabJ Elem table item at node J	W	
Fact Optional scale factor	1	
KUND Items to be plotted on		
	Ondeformed and the second s	MAR 16 2012 20:14:14
OK Apply	Cancel	

Esercitazione N.2 (Soluzione con l'elemento PIPE)

Elemento PIPE16, si usa per travi a sezione circolare piena o cava (tubi). Con questo elemento è più comodo mappare le grandezze, tipo la sigma equivalente.

Per ottenere la soluzione FEM senza reimpostare tutta l'analisi, ma soltanto cambiando l'elemento usato (PIPE) seguire la seguente procedura:

- Cambiare elemento: Preprocessing Meshing Clear Lines Pick All (elimino gli elementi BEAM 44)
- Aggiungo il nuovo elemento PIPE16: Preprocessor Element Type Add/Edit/Delete (cancello il vecchio elemento BEAM 44)
- 3. Nelle **Real Constant**, cancellare il set definito per il BEAM 44 ed impostare quello per il PIPE 16
- 4. Successiva avviare la discretizzazione: Meshing Mesh Lines Pick All
- 5. Calcolare la nuova **soluzione** con l'elemento PIPE16
- 6. Ri-mappatura dei dati: bisogna **riconfigurare i codici relativi all'elemento** scelto. Bisogna ricalcolare quindi la sigma equivalente.

Esercitazione N.2 (Soluzione con l'elemento PIPE)

In questo caso, con l'elemento PIPE, la sigma equivalente si trova già tabellata e non va calcolata: **SEQV**

Fable 16.3 PIPE16 Item and Sequence Numbers (Node I)						
	ETABLE and ES					
Output Quantity Name		E				
	rtem		0°	45°	90°	
SAXL	LS	-	1	5	9	
SRAD	LS	-	2	6	10	
ян	LS	-	3	7	11	
SXH	LS	-	4	8	12	
EPELAXL	LEPEL	-	1	5	9	

S1	NMISC	-	1	6	11
S3	NMISC	-	3	8	13
SINT	NMISC	-	4	9	14
SEQV	NMISC	-	5	10	15

Il codice NMISC,5 o NMISC,10 dipende dalla coordinata angolare in cui si vuole calcolare la sigma equivalente.

Il codice NMISC,5 corrisponde a 0°, quindi al punto rosso.

Esercitazione N.3 (Struttura portante di un capannone in acciaio)

Calcolare il coefficiente di sicurezza della struttura rappresentata in figura, soggetta a carico neve, peso proprio e peso del complesso carro-ponte. Si trascurino il carico vento e le controventature laterali.

Esercitazione N.3 (Struttura portante di un capannone in acciaio)

Esercitazione N.3 (Struttura portante di un capannone in acciaio)

Aste:

d= 20 mm

 $A = 3.14 \text{ cm}^2$

Esercitazione N.3

(Struttura portante di un capannone in acciaio)

New:

- Definizione caratteristiche della sezione mediante real constants o section.
- Orientamento delle sezioni nello spazio.
- Visualizzazione riferimenti di elemento e sezioni trasversali.
- Modellazione con più di un tipo di elemento.
- Modellazione con sezioni delle travi diverse.
- Sfruttamento condizioni di simmetria.
- Gestione vincoli interni (cerniere, snodi,glifi, etc).
- Funzionalità di copia del modellatore solido.
- Post-processing: visualizzazione dei valori numerici delle grandezze di interesse.

Esercitazione N.3 (Impostazioni base)

1) Impostazione elemento: definizione di due elementi, BEAM44 per le travi HEA300, HEA200 ed IPE300, mentre LINK8 per le aste che funzionano da puntoni e tiranti.

2) Impostazioni costanti: sono diverse per ogni elemento, LINK 8 e BEAM44 (non si considera la torsione nelle costanti perché la struttura reagisce solo a flessione)

Ogni set di costanti si riferirà ad una tipologia di trave:

Set 1: asta diametro 0.02 m Set 2: asta diametro 0.01 m Set 3: HEA300 Set 4: HEA200 Set 5: IPE300	Real Con Define Set Set Set Set Set	stants ed Rea 1 2 3 4 5	I Constant	Sets	
NB: assegnare correttamente i momenti d'inerzia in base agli assi della figura					
3) Impostazione materiale: lineare, elastico, isotropo + densità per la forza peso della struttura (per l'impostazione della forza peso vedere le slide successive)	Add	tt	Edit	Delete	2
	C	ose		Help	

Esercitazione N.3 (Impostazioni base)

4) Impostazione geometria: si fissa un sistema di riferimento arbitrario e si assegnano le coordinate dei vari punti della struttura.

KEYPOINT

P1 (-10,0,0) P2 (-10,4,0) P3 (-9.6,4,0) P4 (-10,5,0) P5 (0,5,0) P6 (-10,5,0) P7 (0,7.6,0)

NB: Ci sono due punti coincidenti (4 e 6). Collego il punto 4 al punto 5 ed al nodo 2, mentre il nodo 6 lo collego al nodo 7.

Non creo al momento le aste, che verranno modellate in seguito.

Esercitazione N.3 (Meshing)

Meshing - Mesh Attributes - Picked Lines: selezionare le linee a cui bisogna assegnare le Real Constant per le varie tipologie di trave (HEA300, HEA200, IPE300, ASTE...)

Il Real Constant Set 3 , si riferisce alla HEA300 che è una BEAM44	Line Attributes [LATT] Assign Attributes to Picked Lines MAT Material number	
(successivamente fare APPLY). Ripetere la procedura per tutte le travi della struttura, cambiando di	REAL Real constant set number TYPE Element type number SECT Element section Pick Orientation Keypoint(s)	3 1 BEAM44 None defined No
volid in volid i kedi Considiri sei.	ОК Арріу	Cancel Help

Meshing – Size Cntrls – Manual Size – Line – Picked Lines Discretizzazione degli elementi: 0.2 m di grandezza per gli elementi delle travi HEA300, mentre 50 divisioni per le travi HEA200 ed IPE300.

Mesh – Lines – Pick All

Esercitazione N.3 (Accoppiamento GDL)

La cerniera dove sono sovrapposti i punti 4 e 6, nello spazio è uno snodo sferico, quindi bisogna accoppiare i gradi di libertà (stessi spostamenti per i due punti). Impostazione di vincoli interni.

Preprocessor - Coupling/Ceqn - Couple DOFs:

Seleziono i due nodi sovrapposti, prima uno e poi l'altro, poi fare «Apply»

Selezionare i gradi di libertà da accoppiare

Ripetere tre volte lo stesso procedimento per UX, UY, ed UZ (stessi spostamenti)

NB: tale procedura si effettua solo sull'elemento già discretizzato e non sulla geometria, è quindi prima necessario prima fare la mesh!

Esercitazione N.3 (Creazione delle ASTE/LINK)

Si crea direttamente l'elemento asta (chiamato LINK8) tra due nodi delle travi.

Modeling - Create - Elements - Elements Attributes

Indicare quale Set di costanti è associato all'asta che si andrà a realizzare tra i due nodi.

Modeling - Create - Elements -Auto numbered - Tru nodes: selezionare i due nodi tra cui si

vuole creare l'elemento asta e poi fare «Apply».

	Element Attributes	×
	Define attributes for elements	
1	TYDE1 Element type number	2 LINK8
	[MAT] Material number	1 -
	[REAL] Real constant set number	2 🗸
	[ESYS] Element coordinate sys	0 🔽
	[SECNUM] Section number	None defined 🗨
	[TSHAP] Target element shape	Straight line
	OK Cancel	Help

NB: prima creare le aste con sezione 0.02m, poi cambiare gli attributi e realizzare l'asta con sezione di 0.01 m (posizione delle aste arbitraria, circa ad 1/3).

Esercitazione N.3 (Vincoli nello spazio)

Impostare i vincoli sempre sulla geometria (On Keypoints).

Carrello: blocco spostamento lungo x (UX), lungo z (UZ) e rotazione y (ROTY)

Pattino: blocco rotazione y (ROTY) e z (ROTZ) e spostamento lungo x (UX)

Incastro: All DOF

NB: In questo modo la trave che unisce i punti 4 e 6 è isostatica (3+3 GDL bloccati).

Se non si fosse bloccata la rotazione ROTY, il programma non sarebbe riuscito a calcolare la soluzione poiché il sistema sarebbe risultato labile, e sarebbe comparso un msg di errore nella finestra DOS.

La trave che unisce gli altri punti, essendo incastrata è già isostatica (6GDL).

Esercitazione N.3 (Peso della struttura)

Per impostare il **peso proprio della struttura** si inserisce l'effetto della **gravità**, con un accelerazione generale verso l'alto.

Load - Define Load - Apply - Structural - Inertia - Gravity - Global:

+ 9.81 lungo y verso l'alto

Apply (Gravitational) Acceleration [ACEL] Apply (Gravitational) Acceleration ACELX Global Cartesian X-comp ACELY Global Cartesian Y-comp 9.81 ACELZ Global Cartesian Z-comp OK Cancel		
[ACEL] Apply (Gravitational) Acceleration ACELX Global Cartesian X-comp p ACELY Global Cartesian Y-comp 9.81 ACELZ Global Cartesian Z-comp 0 OK Cancel Help	Apply (Gravitational) Acceleration	
ACELX Global Cartesian X-comp ACELY Global Cartesian Y-comp ACELZ Global Cartesian Z-comp OK Cancel Help	[ACEL] Apply (Gravitational) Acceleration	
ACELY Global Cartesian Y-comp ACELZ Global Cartesian Z-comp OK Cancel Help	ACELX Global Cartesian X-comp	þ
ACELZ Global Cartesian Z-comp OK Cancel Help	ACELY Global Cartesian Y-comp	9.81
OK Cancel Help	ACELZ Global Cartesian Z-comp	0
OK Cancel Help		
OK Cancel Help		I
	OK Cancel	Неір

NB: bisogna aver definito prima la densità del materiale!

Esercitazione N.3 (Carico distribuito)

Per rappresentare il carico distribuito di forma triangolare, si possono inserire tanti carichi concentrati sui nodi che parametrizzo l'asta inclinata IPE300.

Bisogna quindi calcolare il carico concentrato da mettere su ogni nodo:

7200 N/m * 10,35 m (lunghezza trave IPE300) = 74520 N

74520 N/51 (nodi) = 1461 N

Posso impostare la formula direttamente all'interno del programma in caso contrario.

NB: bisogna selezionare solamente i nodi della trave IPE300, per fare ciò si può procedere manualmente oppure attuando la procedura nella seguente slide.

Carico concentrato: inserire semplicemente il carico concentrato di 100000 N al nodo numero 3.

Esercitazione N.3 (Carico distribuito)

Esercitazione N.3 (Schema del modello)

Esercitazione N.3 (Calcolo della SOLUZIONE)

Solution - Solve - Current LS

General Postproc - Plot Results - Deformed Shape (Deformata)

Esercitazione N.3 (Sollecitazioni)

Per le travi i codici della sigma min e max sono i seguenti:

EPINAXL	LEPTH	11	-	-
SMAX	NMISC	-	1	3
SMIN	NMISC	-	2	4
MFORX	SMISC	-	1	7
MEODY	CMICO.		2	0

Per le aste i codici della sigma sono i seguenti: le aste reagiscono solo a compressione o trazione.

	Item	E	I	J	
SAXL	LS	1	-	-	
		1			

Coefficiente sicurezza della struttura: X = sigma snerv. / sig max = 275 MPa / 263 MPa = 1

Esercitazione N.3 (Sigma MAX)

Esercitazione N.3 (Sigma MIN)

Esercitazione N.3 (Sigma ASTE/LINK)

Esercitazione N.4 (Scripting: trave piana, carico variabile)

Individuare la sezione critica della trave piana a sezione rettangolare costante indicata in figura, nelle condizioni di carico e vincolo riportate. Il punto di applicazione del carico si sposta lungo tutta la lunghezza *AC* della trave.

Esercitazione N.4 (Scripting: trave piana, carico variabile)

New:

- Introduzione al linguaggio di scripting: elementi finiti e programmazione.
- Salvataggio testuale.
- Analisi parametriche: definizione variabili per via testuale e tramite interfaccia grafica.

Esercitazione N.4 (Modellazione ed Analisi)

Si modella e si effettua l'analisi della struttura nella classica maniera. Successivamente si determina l'andamento del momento flettente, che interessa per determinare la sezione critica.

Esercitazione N.4 (Salvataggio testuale)

File - Write DB log file: questo comando serve per salvare su un file di testo (formato .lgw) l'equivalente testuale del lavoro realizzato (es. modellazione). Rappresenta la sequenza esatta delle operazioni che sono state effettuate. Questo file può essere ricaricato successivamente in ANSYS.

NB: cambiando l'estensione del file in .txt non cambia nulla.

File - Read Input From: ricarica il file .lgw, ed il programma esegue in automatico le operazioni, ripristinando la situazione antecedente al salvataggio del file.

ANSYS N	Aultiphysics U	tility Me	enu	-		-	-	-
<u>F</u> ile <u>S</u> e	elect <u>L</u> ist	<u>P</u> lot	Plot <u>C</u>	<u>trls</u>	<u>W</u> orkPlan	ie Pa	a <u>r</u> ameters	Mac
D 🖬 W	/rite Database	Log	-	1				
ANSY	Write Database	Log to	(Directo	ries:		ОК	
SAVE	<mark>*.lgw</mark> apdl-trave.low			d:\\e	sercitazioni\es4	1	Cancel	
ANS	-p-:j.				,)aniele Universita	=	Help	
⊡ Pre ⊞ Pre					MAGISTRALE Materie	- L		
⊞ So			Ŧ		y i logettazion	6 P .		
	List Files of Typ Database Log	e: (*.lgw)	•	Drives: d:	: Data	•	Network	J
	Write non-esse	ntial cmo	ls as com	iments		•		
			-					

Esercitazione N.4 (II file .lgw)

Analisi del file .lgw attraverso un editor di testo (notepad++)

/PREP7 (click sul menu Preprocessor) ET, 1, BEAM3 (definizione dell'elemento BEAM3)

(in alcune finestra di Ansys c'è scritto l'equivalente del comando testuale)

KEYOPT, 1, 6, 1 (keyoption) KEYOPT, 1, 9, 0

3

R,1,0.1*0.3,1/12*0.1*0.3**3,0.3, , , , (definizione real constant)

MPDATA, EX, 1,, 200e9 (definizione del materiale) MPDATA, PRXY, 1,, 0.3

LSTR, 1, 2 (creazione delle linee tra punti)

LSTR, 2,

есс...

Esercitazione N.4 (Lista operazione / Backup)

List - File - Log File: elenca la sequenza di operazioni che sono state effettuate dentro ANSYS da una determinata data in poi.

Serve anche per vedere l'equivalente testuale di un comando grafico.

hysics Utility M	enu	A CONTRACTOR OF A DESCRIPTION OF A DESCRIPANTE OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCR				
List Plot	Plot <u>C</u> trls	WorkPlane	Pa <u>r</u> ameters	<u>M</u> acro	Me <u>n</u> uCtrls	<u>H</u> elp
Files Status Keypoin Lines Areas Volume Nodes Elemen Compo	nt + s ts + nents	Log File . Error File Other Binary Fil I SE 12.1 UP2000	es	:51 03/14/	2012	
Parts Picked Propert Loads Results Other Iement Sol Iem Table ine Elem R tor Plot Path Item Icrete Plot	Entities + ies /con,movo kee /input, nenust, /GRA,POUER /GST,ON /GRO,CURL,ON /CPLANE,1 /REPLOT,RESIZE UPSTVE,SIZE /CUD, 7D:\Danie FINISM	P,'',, azione_1,1 emSE 12.1 UP200 tmp,'',	,,,,1 91102 19:3 ,,,,1 STRALE\Haterie\P	':08 03/16/ rogettazione∤	2012 leccanica agli Ele	menti Finiti\Esercitazioni\es2'

Esercitazione N.4 (Analisi parametrica)

All'interno del file .lgw c'è la possibilità di **definire delle specifiche variabili**: ad esempio è possibile modificare in automatico il valore di una forza senza cambiare ogni volta il suo valore manualmente.

Esempio: forza, variabile XUP = 100000

nel file sostituisco la variabile XUP in tutti i punti in cui è presente la forza

Come inserire delle variabili dall'interfaccia grafica:

Parametres - Scalar parametres

si definiscono dellle variabili che posso riutilizzare nei campi dell'interfaccia grafica, ad esempio: Invece del valore dei carichi, scrivo direttamente il nome della variabile «**forza**»

Parameters Macro MenuCtrls Help
Scalar Parameters Get Scalar Data Array Parameters Get Array Data Array Operations Functions Angular Units Save Parameters Restore Parameters
MAX =214881 ELEM=137 FORZA = 100
X Accept Delete Close Help

apdl-trave.lgw !pulisco e ricomincio da capo 2 FINISH 3 /CLEAR 4 5 definzioni costanti 6 FORZA=-100000 7 XUP=14 8 LUNG=16 9 BASE=0.1 10 ALT=0.3 11 NPASSI=50 12 13 !entro nel preprocessore 14 /PREP7 15 16 !definizione elemento 17 ET, 1, BEAM3 18 19 !definizione keypoint 20 KEYOPT, 1, 6, 1 KEYOPT, 1, 9, 0 21 22 23 !definizione real costant 24 R,1,BASE*ALT,1/12*BASE*ALT**3,ALT, , , , 25 !definizione materiale 26 27 MPTEMP,,,,,,,, 28 MPTEMP,1,0 29 MPDATA, EX, 1,, 200e9 30 MPDATA, PRXY, 1,, 0.3 21

Programmazione tramite interfaccia testuale, del carico mobile lungo la trave:

- 1. Pulizia del file originale .lgw
- 2. Inserimento delle variabili
- 3. Divisione ed inserimento dei commenti nelle varie sezioni del file
- 4. Impostazione del ciclo per il carico mobile lungo la trave
- 5. Salvataggio dei dati in una nuova variabile
- 6. Plottaggio del valore massimo del momento nelle singole sezioni della trave, per ogni posizione del carico

```
apdl-trave.lgw
 32
    !definizione keypoint
 33 K,1,0,0,0
 34 K,2,XUP,0,0
 35 K, 3, LUNG, 0, 0
 36
 37
     !creazione delle linee
 38
     LSTR,
                 1,
                           2
     LSTR, 2,
 39
                           3
 40
 41
     !finezza mesh
     LESIZE, ALL, 0.05, , , ,1, , ,1,
 42
  43
  44
     !crea la mesh su tutte le linee
     LMESH, ALL
  45
 46
  47
     !il comando /EOF termina il caricamento del file, fino al punto in cui ho scritto il comando
 48
     !definizione dei vincoli
 49
     DK,1,ALL,0
 50
 51
      DK,2,UY,0
 52
  53
     !entro nel postprocessore
  54
      FINISH
 55
     /POST1
 56
 57
     !definizione di una variabile momento massimo
 58
     ETABLE, MMAX,
 59
  60
     !prendo i valori in modulo, mi interessa il valore assoluto del momento
  61
     SABS,1
```

😑 apdl+	trave.lgw
64	!apertura del ciclo
65	<pre>!come scrivere un ciclo dentro ansys *DO,I,1,N e chiudo *ENDDO</pre>
66	*DO,I,1,NPASSI
67	
68	!rientro nel preprocessore
69	FINISH
70	/PREP7
71	
72	!cancello una forza presistente
73	FDELE, ALL, ALL
74	
75	definizione della forza, il comando NODE(x,y,z) mi definisce la coordinata di applicazione della forza
76	definizione come sposta il carico in maniere iterativa
77	F,NODE((I-1)/(NPASSI-1)*LUNG,0,0),FY,FORZA
78	
/9	FINE Preprocessore
80	FINISH
01	lentro nella soluzione
02	(sou
84	SOLVE
85	FINISH
86	
87	!entro nel postprocessore
88	/POST1
89	AVPRIN,0, ,
90	
91	!definisco l'element table
92	ETABLE, MOMZ-I, SMISC, 6
93	ETABLE, MOMZ-J, SMISC, 12

```
94
 95
          !plotta i diagrammi
         PLLS, MOMZ-I, MOMZ-J, 1, 0
 96
 97
 98
         !calcola il massimo tra i momenti
 99
         SMAX, MMAX, MMAX, MOMZ-I
100
         SMAX, MMAX, MMAX, MOMZ-J
101
         !mi mostra il risultato per 3 secondi
102
103
         /WAIT 3
104
105
     !chiusura del cliclo
106
     *ENDDO
107
    !plotta il massimo tra i valori del momento
108
     PLLS, MMAX, MMAX
109
110
111
```

Risultato della programmazione

File - Read Input From: ricarica il file ed il programma esegue le operazioni.

Esercitazione N.5 (Piastra con foro, fattore di intaglio)

Calcolare il fattore di intaglio della piastra con foro circolare indicata in figura, soggetta ad un carico monoassiale. Valutare successivamente l'effetto di fori aggiuntivi, di diametro minore, praticati

sull'asse maggiore della piastra, in vicinanza del foro principale

Esercitazione N.5 (Piastra con foro, fattore di intaglio)

New:

- Utilizzo di elementi piani a 4 nodi per un problema in stato di tensione piana.
- Introduzione alla modellazione di geometrie 2D.
- Importanza della discretizzazione ai fini dell'accuratezza della soluzione.
- Tecniche per la gestione della finezza della discretizzazione: sizing linee, aree e spacing ratio.
- -Visualizzazione risultati per problemi a dimensionalità 2D e 3D

Esercitazione N.5 (Informazioni preliminari)

• Nella modellazione della piastra non interessa il suo spessore, perché il carico viene applicato in termini di tensione p (es. p=100 MPa).

NB: Non è importante il valore del carico per determinare il fattore di intaglio!

- Viene sfruttata la doppia simmetria e si studia quindi solo 1/4 della piastra. In questo modo si riducono i temi di calcolo.
- Come vincoli vengono impostati dei carrelli che impediscono le traslazioni e le rotazioni verticali. I carrelli si considerano applicati ad ogni nodo della mesh.
- Per la realizzazione della mesh vengono utilizzati elementi piani a 4 nodi.
- All'interno di ANSYS non esistono elementi triangolari a 3 nodi, oppure tetraedri a 4 nodi, perché descriverebbero la realtà fisica troppo rigidamente. In alcuni casi quando non si riesce a descrivere correttamente una geometria con una mesh quadrangolare, uno dei nodi collassa automaticamente su di un altro e forma un elemento a mesh triangolare (eccezione!)

Esercitazione N.5 (Definizione Elemento)

	Element Types			<u>x</u>
	Defined Element Types: Type 1 PLANE42			
	▲ Library of Element Types			
Ŧ	Library of Element Types		Structural Mass Link Beam Pipe Solid Shell Solid-Shell	Quad 4node 42 4node 182 8node 183 8node 82 Axi-har 4node 25 Quad 4node 42
± ±	Element type reference number		2	
±	ОК	Apply	Cancel	Help

Element Type: quad 4node 42

(Si utilizza l'elemento PLANE42 quando si considera uno stato di tensione piana).

Questo elemento quando non riesce a discretizzare un'area con elementi quadrangolari, fa degenerare uno dei quattro nodi e realizza, come detto, un elemento triangolare.

Esercitazione N.5 (Definizione Elemento)

The Electron	ment Types	
	efined Element Types: pe 1 PLANE42	
	▲ PLANE42 element type options	
	Options for PLANE42, Element Type Ref. No. 1	
	Element coord system defined K1	Parall to global
Ŧ	Extra displacement shapes K2	Include 💌
 ⊕	Element behavior K3	Plane stress
Ð	Extra stress output K5	Axisymmetric Plane strain
± 	Extra surface output K6	Plane strs w/thk
	OK Cancel	Help

Opzioni dell'elemento PLANE 42: impostazione del campo K3

- plane stress: stato tensione piana (spessore unitario)
- plane strain: stato di deformazione piana (spessore unitario)
- axisymmetric: problemi assialsimmetrici
- plane stress with thinkness: stato tensione piana + spessore

Esercitazione N.5 (Realizzazione geometria)

Real Costant: non è necessario inserirle se viene considerato nel campo K3 se non considero lo spessore della piastra. E' necessario inserirle solo quando si considera lo spessore.

Material Properties: solita impostazione per l'acciaio.

Realizzazione della geometria (esistono due approcci)

- Dall'alto al basso: operazioni booleane tra superfici
- <u>Dal basso all'alto</u>: si creano i punti, poi le linee ed infine l'area racchiusa tra le linee. Tale metodo si usa quando ci sono poche linee (tre/quattro) altrimenti si ottengono risultati non ottimali.

Modelling - Create - Areas - Rectangle - By Dimensions

Se si fosse scelto scelto «Arbitrary» si sarebbe usato l'approccio dal basso all'alto.

Verranno create due superfici: prima la superficie rettangolare, successivamente il cerchio, ed infine le due aree vengono sottratte. □ Modeling
 □ Create
 □ Keypoints
 □ Lines
 □ Areas
 □ Areas
 □ Arbitrary
 □ Rectangle
 >> By 2 Corners
 >> By Centr & Cornr
 □ By Dimensions
 □ Circle
 □ Polygon

Il centro degli assi coordinati è posto nel centro del cerchio.

Esercitazione N.5 (Realizzazione geometria)

Modelling - Create - Areas - Rectangle - By Dimensions:

si inseriscono le coordinate dei due punti opporti rispetto agli assi di riferimento e si crea il rettangolo.

P1 (0, 0) e P2 (0.5, 0.2)

Modelling - Create - Areas - Circle - Solid circle:

si impostano le coordinate del centro ed il raggio del foro.

O(0, 0) e R = 0.02

Modelling - Operate - Booleans - Subtract:

selezionare l'area esterna rettangolare (click ok), selezionare l'area da sottrarre (click ok), viene creata una terza area e le prime due vengono cancellate. (controllare che ci sia solo la terza area attraverso **LIST - AREAS**)

NB: per eliminare l'area creata fare:

Delete - Areas and Below

(cancella tutte le entità create: punti, linee ecc., che potrebbero dare dei problemi)

Esercitazione N.5 (Realizzazione geometria)

Modelling - Operate - Booleans - Add, Subtract, Glue

Glue: unisce le due aree ma le considera come saldate attraverso il bordo, differente da **Add** che le unisce creando una sola area.

Meshing - Size Cntrls - Manual Size

Si cerca di posizionare gli elementi più piccoli vicino al foro, dove bisogno di una maggiore precisione della soluzione e dove bisogna cogliere meglio i gradienti di tensione e deformazione.

Si utilizza un **sizing variabile** delle linee, in questo modo si avranno elementi più grandi lontani dal foro ed elementi più piccoli vicino, mentre saranno di dimensione costante sul contorno circolare.

Conviene visualizzare le linee andando in: **PLOT – Lines**

Meshing - Size Cntrls - Manual Size - Lines - Picked Lines

- Imposto 10 elementi sul contorno circolare del foro
- Imposto 20 elementi sulla linea verticale + spacing ratio 0.1
- Imposto 0.04 m per le altre linee (cerco di far si che gli elementi siano uguali a quelli più grandi delle altre linee)

Spacing ratio: è il rapporto tra l'elemento più grande ed il più piccolo all'inizio e alla fine della linea.

Per impostare correttamente lo spacing ratio bisogna sapere come è orientata la linea, per capire quale è l'inizio e la fine... si va a tentativi!

Nel caso in cui la suddivisione della linea in elementi non avvenisse secondo il rapporto che si voleva, si inverte il valore dello spacing ratio.

Volendo lo spacing ratio potrebbe essere anche negativo, in questo caso ci sarà l'elemento grande al centro, ed un progressivo infittimento verso gli estremi.

Meshing - Size Cntrls - Manual Size - Lines - Picked Lines

Imposto 20 elementi linea verticale + spacing ratio 0.1

▲ Element Sizes on Picked Lines	
[LESIZE] Element sizes on picked lines	
SIZE Element edge length	
NDIV No. of element divisions	20
(NDIV is used only if SIZE is blank or zero)	
KYNDIV SIZE,NDIV can be changed	🔽 Yes
SPACE Spacing ratio	0.1
ANGSIZ Division arc (degrees)	
(use ANGSIZ only if number of divisions (NDIV) and	
element edge length (SIZE) are blank or zero)	
Clear attached areas and volumes	∏ No
OK Apply	Cancel Help

Risultato dello spacing ratio

Mesh - Areas - Free: selezionare l'area, poi (ok)

Con il comando Free la mesh viene più irregolare rispetto al comando Mapped.

In questo caso quello che conta non è la regolarità della mesh (anche una mesh irregolare dà ottimi risultati), ma l'importante è che gli elementi generati non siano distorti e troppo lontani dalla forma originale.

List - Status - Global Status: Elenco del numero elementi e nodi

∧ /stat	Command						
File							
Keypoints Lines Areas Volunes .		Largest Number 8 10 3 0	Number Defined 5 5 1 0	Number Selected 5 5 1 0			
Finite ele	нent model summary:						
Nodes Elements.		Largest Nunber 229 189	Number Defined 229 189	Number Selected 229 189			
Element ty Real const Material p	pes ant sets roperty sets	1 0 1	1 0 1	n.a. n.a. n.a.			
Coupling. Constraint Haster DOF: Dynamic ga	equations s p conditions	0 0 0	0 0 0	n.a. n.a. n.a. n.a.			
BOUNDI	ARY CONDIT	TION	INFORMATI	0 N	-		

Con i computer attuali dotati di molta RAM si può arrivare ad elaborare anche 50 o 100 mila elementi. Oltre tali valori servono dei server particolari ecc.

Esercitazione N.5 (Carichi e Vincoli)

Load ... - Displacement - On Lines:

Si seleziona la linea verticale e si blocca UX, mentre per le linea orizzontale si blocca UY.

Applicando i vincoli sulle linee è come se lo applicassi su tutti i nodi.

(La struttura deve essere isostatica!)

Load ... - Pressure - On Lines: -100e6 (100 MPa) Pressioni positive: entranti verso il corpo Pressioni negative: uscenti dal corpo

NB: la convenzione è valida solo per le pressioni!

Applicando il carico sulla linea è come se l'applicassi a tutti elementi.

Esercitazione N.5 (Deformazione)

Solution - Solve - Current LS

General Postproc - Plot Results - Deformed Shape

Esercitazione N.5 (Tensione MAX)

General Postproc - Plot Results - Contourn Plot: Nodal solution oppure Element solution: x-component of stress

NB: le tensioni e le deformazioni sono grandezze di elemento, mentre gli spostamenti sono grandezze nodali!

NB: Quando la risposta/soluzione diventa asintotica all'aumentare della «finezza» della mesh, vuol dire che ho discretizzato correttamente il mio modello.

Esercitazione N.5 (Fattore di Intaglio)

Dove con $A_{esterna}$ si è indicata l'area dove è applicata la forza, mentre con $A_{centrale}$ l'area dove è presente l'intaglio. Essendo lo spessore trascurato e considerato unitario i valori sono 0,2 m² e 0,18 m².

Per migliorare la mesh si possono seguire due strade:

- 1) Rifare la mesh da capo ed infittirla dove si ha bisogno bisogna cancellare la mesh e ricrearla
- 2) Bisogna infittire la mesh direttamente dove si ha bisogno

Meshing - Modifify Mesh - Refine at

Ad esempio si scelga **Element**: si infittiscono gli elementi vicini al foro, selezionandoli ad esempio con il comando **Circle**.

Successivamente inserire il livello di **Refine**: il valore minimo conduce già ad un ottimo risultato.

∧ Refine Mesh at Element	
[EREF] Refine mesh at elements LEVEL Level of refinement Advanced options	<mark>1 (Minimal)</mark> ☐ No
OK	Cancel Help

Risultato Re-Meshing nelle prossimità del foro

Esercitazione N.5 (Tensione MAX)

Si ricalcola la soluzione con il nuovo livello di mesh e si controlla il valore della tensione massima.

Si nota come il valore sia aumentato passando a 304 MPa.

Iterando il procedimento si vede come infittendo la mesh la soluzione si asintotizza sempre di più al corretto valore. Se si aumenta ancora di puù la finezza della mesh, probabilmente il valore della tensione non cambierà di molto.

Esercitazione N.6

(Trave inflessa in campo plastico, tensioni residue)

Calcolare lo stato di tensione e di deformazione in una barra in acciaio su 2 appoggi sottoposta ad un momento flettente di intensità tale da indurne la plasticizzazione. Individuare successivamente le tensioni residue nella barra alla rimozione del carico precedentemente applicato.

Modello materiale: elasto-plastico bilineare

E= 200 GPa ν =0.3 σ_s= 400 MPa M_{tang}= 2 GPa

Esercitazione N.6

(Trave inflessa in campo plastico, tensioni residue)

Dettagli geometrici e condizioni di carico della struttura

Schema di calcolo, modello simmetrico

Esercitazione N.6

(Trave inflessa in campo plastico, tensioni residue)

New:

- Applicazione del momento flettente tramite spostamenti imposti o pressione variabile sulle sezioni di estremità.
- Introduzione alla modellazione del comportamento plastico: modello elasto-plastico isotropico bilineare.
- Analisi non lineare in ipotesi di piccoli spostamenti.
- Analisi consecutive con condizioni di carico diverse: analysis restart.
- Visualizzazione grandezze di interesse lungo un percorso: path plot.

Esercitazione N.6 (Informazioni preliminari)

Si utilizza un modello elasto-plastico isotropico bilineare.

Si approssima uno stato di tensione piana

Element Type - quad 4node 42 (PLANE42)

Esercitazione N.6 (Informazioni preliminari)

Il momento flettente si applica imponendo uno spostamento noto di 10 mm all'estremità della barra, sufficiente alla plasticizzazione del materiale.

Alternativamente si potrebbe simulare l'effetto di un momento concentrato applicando delle pressioni costanti con segno opposto lungo il bordo della barra.

Questo mesto modo è equivale all'applicazione del momento flettente.

Esercitazione N.6 (Non linearità del materiale)

La soluzione del problema non è lineare. La causa di ciò è la non linearità del materiale.

Il solutore non risolve il problema direttamente ma lo fa in maniera iterativa, **step by step**, applicando il carico progressivamente e facendo delle iterazioni successive per arrivare alla soluzione corretta.

Impostazione della non linearità del materiale: parte lineare + parte non lineare

Parte lineare: Structural – Linear – Elastic – Isotropic

Parte non lineare:

Structural - nonlinear – inelastic -Rate Independet -Isostropic - Hardening Plasticity -Mises Plasticity - Bilinear

Esercitazione N.6 (Modellazione)

Si imposta la modellazione come nell'Esercitazione N.5 (Element Type: plain strain)

Geometria: si creano due superfici che poi vengono unite con il comando GLUE. Questo serve per avere dei keypoint posizionati correttamente, dove verranno applicati i vincoli.

Vincoli: si sfrutta la simmetria. Dove viene interrotta la continuità della trave si impone il vincolo di carrello che blocca le traslazioni lungo x (UX). Tale vincolo si applica anche alla linea delle superficie (On Lines).

Il vincolo di appoggio, dove poggia la barra, blocca le traslazioni lungo y (UY). Questo vincolo viene applicato sul Keypoint corrispondente.

Spostamento/Momento: lo spostamento viene applicato imponendo un vincolo al Keypoint in alto a sinistra della barra: si impone uno spostamento di 0.01 m alla UY.

Esercitazione N.6 (Modellazione)

Mesh: in questo caso la mesh viene applicata usando il comando AREAS e selezionando le due aree unite con il comando GLUE. Successivamente attraverso il comando MAPPED si crea la mesh.

Alternativamente si poteva procedere come nell'Esercitazione N.5.

Esercitazione N.6 (Analisi NON-LINEARE)

Tempo fittizio totale in cui vengono fatti gli step Impostazione automatica degli supstep necessari per la soluzione del problema non lineare

Esercitazione N.6 (Calcolo SOLUZIONE)

Solution - Solve - Current LS

Soluzione iterativa passo-passo del problema non lineare.

Esercitazione N.6 (Risultati)

General Postproc - Plot Results - Deformed Shape

General Postproc - Plot Results – Nodal solution – Stress: X-component of stress

Esercitazione N.6 (Risultati)

General Postproc - Plot Results – Nodal solution – Plastic Strain: x-component of Plastic strain

Esercitazione N.6 (Risultati - Define Path)

General Postproc - Path Operation - Define Path - By Nodes

Definizione del percorso sul quale si vuole vedere l'andamento di una grandezza. Rappresenta l'ascissa curvilinea sulla quale andiamo a visualizzare la soluzione ottenuta.

Selezionare i punti estremi del percorso: in questo caso gli estremi della sezione, quindi il bordo delle sezione (ok).

Successivamente definire il nome del Path (ok). Non cambiare gli altri parametri.

10008		
.10838	A By Nodes	
	[PATH] Define Path specifications	
G	Name Define Path Name :	sezione
	nSets Number of data sets	30
ġ	nDiv Number of divisions	20
<u>z x</u>	OK Cancel	Help

Esercitazione N.6 (Risultati - Define Path)

General Postproc - Path Operation - Map Onto Path

Si definiscono le grandezze da mappare (equivalente all'Element Table)

▲ Map Result Items onto Path			
[PDEF] Map Result Items onto Path			
Lab User label for item	SX		
Item,Comp Item to be mapped	DOF solution Stress Strain-total Energy Strain-elastic Strain-thermal Strain-plastic	4 III +	X-direction SX Y-direction SY Z-direction SZ XY-shear SXY YZ-shear SYZ
[AVPRIN] Eff NU for EQV strain			
Average results across element	Ves		

Esercitazione N.6 (Risultati - Define Path)

General Postproc - Path Operation - Plot Path Item - On the Graph

Si realizza il grafico con i dati mappati

Esercitazione N.6 (Tensioni residue)

Per calcolare le tensioni residue, dopo aver eliminato il carico dalla barra, si procede come segue:

1) Si entra nel solutore, si imposta che la soluzione del problema non debba ripartire da zero, ma che deve considerare i risultati della deformazione plastica:

Solution – Analysis Type – Restart

2) Si cambiano le condizioni di carico, rimuovendo il carico applicato. Tale operazione viene fatta rimanendo all'interno del solutore:

Solution - Define Loads - Delete - ... - Displacement - On Nodes

NB: si sceglie On Nodes perchè il programma trasferisce al momento dell'analisi i carichi dalla goemetria (keypoint) al nodo. In particolare quando si effettua il Restart, tutto quello che è sulla geometria, viene spostato sui nodi.

3) Cancellare UY

4) Ripetere l'analisi: Solution - Solve - Current LS

Esercitazione N.6 (Risultati)

General Postproc - Plot Results - Deformed Shape

La deformata dopo la rimozione del carico ha riacquistato qualche mm a causa del ritorno elastico della barra

Esercitazione N.6 (Risultati)

General Postproc – Plot Results – Nodal solution – Stress: x-component of stress

Tensioni residue, zona rimasta plasticizzata.

Esercitazione N.7

(Simulazione elasto-plastica della prova di trazione su provino cilindrico)

Esercitazione N.7

(Simulazione elasto-plastica della prova di trazione su provino cilindrico)

New:

- Introduzione alla modellazione del comportamento plastico: modello elasto-plastico isotropico non-lineare.

- Analisi non lineare in ipotesi di grandi spostamenti e grandi deformazioni.

- Elemento piano assial-simmetrico a 4 nodi.

-Uso del solutore per analisi non-lineari: tempo analisi, step e sottostep, impostazione opzioni di calcolo

- Visualizzazione risultati: campo di tensione e deformazione, time-history e animazione grandezze di interesse

Esercitazione N.7 (Informazioni preliminari)

Modelli costitutivi elasto-plastici: espressione analitica non lineare di tipo esponenziale

Esercitazione N.7 (Informazioni preliminari)

Problema assialsimmetrico

Ogni elemento rappresenta un anello circolare intorno alla sezione.

Il codice di calcolo per la soluzione di questo tipo di problemi usa un'approssimazione, quindi bisogna utilizzare una mesh di elementi più fitta rispetto al caso piano.

In questo tipo di analisi (prova di trazione), non c'è un modello per determinare il punto di rottura del materiale, si può valutare solo l'andamento plastico della deformazione.

NB: utilizzando l'elemento assialsimmetrico bisogna far coincidere l'asse di simmetria dell'elemento con quello del provino.

Esercitazione N.7 (Element Type)

Element Type: quad 4node 182 (PLANE182)

L'elemento PLANE42 non va bene per questo tipo di analisi perché non ha la possibilità di considerare il modello non lineare per il materiale.

4note 182 - opzione axisymmetric

)efined Element Types: ype 1 PLANE182	
▲ PLANE182 element type options	
Options for PLANE182, Element Type Ref. No. 1	
Element technology K1	Full Integration
Element behavior K3	Axisymmetric
Element formulation K6	Pure displacemnt
(NOTE: Mixed formulation is not valid with plane stress)	
User defined initial stress K10	No USTRES routn
OK Cancel	Help

Esercitazione N.7 (Materiale)

Impostazione di un modello non lineare di tipo esponenziale.

Structural - Nonlinear - Inelastic - ... - Mises plasticity – Non linear

Parametri caratteristici della curva σ - ϵ

Esercitazione N.7 (Modellazione)

Geometria: si creano due superfici rettangolari unite con il comando GLUE. Successivamente si sottrae una circonferenza per creare il raccordo.

Vincoli: sfruttando la simmetria e la continuità del materiale, sulla linea lungo l'asse y, vengono bloccate le traslazioni UX con un carrello, lo stesso lungo la linea sull'asse x, bloccando le traslazioni UY con un altro carrello.

Spostamento/Momento: lo spostamento viene applicato imponendo un vincolo alla linea superiore in alto, impostando uno spostamento di 0.00375 m.

Mesh: si imposta una mesh costante di circa 10 elementi lungo lo spessore minimo.

Esercitazione N.7 (Analisi NON-LINEARE)

Solution - Analysis type - Sol'n Controls

Esercitazione N.7 (Analisi NON-LINEARE)

Per vedere i passi intermedi (substeps) della soluzione non si usa l'automatic stepping: si imposta l'opzione su **OFF**.

Il numero substeps deve essere superiore al numero di substeps di cui voglio conosce la soluzione (es. imposto 200 passi e di 10 ne voglio conoscere la soluzione).

Note:

- con passi troppo grandi, non si ha la convergenza della soluzione
- con un numero eccessivo di passi, si impiega troppo tempo per calcolare la soluzione.

Si procede quindi per tentantivi: se il programma si blocca, si cambia il numero di substeps.

Frequency: serve per impostare quanti subtesps salvare

Esercitazione N.7 (Risultati)

Una volta terminato il calcolo della soluzione, dentro **General Post Proc** si trova sempre l'ultimo passo della soluzione è stato calcolato.

Per vedere i passi precedenti della soluzione:

General Post Proc - Read Results - Previuos Step

In questo modo è possibile spostarsi all'interno dei vari substep (sono tutti passi che ANSYS ha utilizzato per calcolare il risultato finale).

Esercitazione N.7 (Risultati + Animazione)

Soluzioni ai nodi (Nodal Solution)

- Equivalent plastic strain: deformazione plastica
- <u>Y component displacement</u>: deformazione lungo l'asse y, in base alla deformazione nei singoli step, posso dedurre il corrispondente carico applicato.

Animazione delle grandezze di interesse (ad esempio deformazione lungo Y): Plotcrl - Animate – Over Results

On			
0.5			
Use Last Display		Deformed Shape	
DOF solution		Translation UX	=
Stress	E	UY	
Strain-total		UZ	
Energy		USUM	-
Charlin an an clana			
Strain ener dens			

Esercitazione N.7 (Risultati)

Esiste un'altra possibilità di visualizzare i risultati:

TimeHist Postproc: è un menu pensato per fare l'andamento nel tempo. In questo caso attraverso gli incrementi del carico nell'analisi non lineare.

▲ Time History	y Variables - ese	titazione_8.rth		X
File Help				
$\pm \times \square$	= 🖻 🖻 🗖	None 🕒 💊 🕸		Real
Variable L	ist			
Name	Element	Node Result Item	Minimum	Maximum 🔺
TIME		Time	1	1
•	-	Add Time-History Variable	X	▼
Calculator	_	Result Item		
(MIN MAX RCL STO) CONJ a+ib	 Ist Principal plastic strain 2nd Principal plastic strain 3rd Principal plastic strain Plastic strain intensity von Mises plastic strain Equivalent plastic strain 		
INS MEM		The force results are the total forces		
ABS	ATAN			
	INT1	OK Apply	Cancel Help	
INV	DERIV	REAL 0 .	+ R	

Esercitazione N.7 (Risultati)

E' possibile graficare e plottare una serie di variabili:

+add data: grandezze che posso aggiungere e plottare.

Successivamente bisogna scegliere su quale nodo vedere la grandezza scelta.

Si aggiunge un'altra grandezza da plottare e poi si fissa l'ascissa e si seleziona l'ordinata.

Cliccando poi sul pulsante GraphData si plotta il grafico

Progettare un dissipatore per cpu avente la geometria (di massima) illustrata in figura. La base del dissipatore, a contatto con la cpu è in rame, mentre il corpo è in alluminio. Sul dissipatore è montata una ventola di raffreddamento. Il dissipatore assorbe calore dalla cpu per conduzione 22 e lo cede per convezione forzata con l'aria

 E' richiesto, lavorando con la geometria di massima:
 il calcolo del campo di temperatura in condizioni di esercizio stazionarie.

- il calcolo delle sollecitazioni meccaniche sul componente dovute agli stress termici.

In seguito si ottimizzi la geometria in modo da garantire:

- che la cpu lavori entro la temperatura massima limite di utilizzo a pieno carico (80℃)

- che in queste condizioni il componente possa resistere elasticamente agli stress termici cui è sottoposto

Infine si simulino gli effetti sul componente causati dalla rottura improvvisa della ventola di raffreddamento

Dati materiali	Alluminio	Rame
Conducibilità termica: Modulo di Young:	$K = 180 \frac{W}{m K}$ $E = 68.9 GPa$	$K = 365 \frac{W}{mK}$ $E = 110 GPa$
Coeff. di Poisson:	v = 0.33	v = 0.35
Tensione di Snervamento:	$\sigma_s = 60 MPa$	$\sigma_s = 80 MPa$
Modulo tangente:	$M_t = 1380 MPa$	$M_t = 2200 MPa$
Coeff. di espansione termica:	$\alpha = 24.2 \cdot 10^{-6} \frac{m}{m K}$	$\alpha = 12.5 \cdot 10^{-6} \frac{m}{m K}$

New:

- Analisi termica stazionaria
- Elementi di tipo termico
- Applicazione carichi e vincoli termici
- Visualizzazione risultati di tipo termico
- Passaggio da analisi termica ad analisi strutturale meccanica (problema disaccoppiato)
- Campo di temperatura da analisi termica come "carico" meccanico
- Campo di tensione dovuto a gradienti termici, coefficiente di dilatazione termica

Esercitazione N.8 (Informazioni preliminari)

Quando si effettua un analisi termina, bisogna scindere il problema meccanico da quello termico. Il programma può usare per l'analisi solo elementi termici o solo elementi meccanici: il problema viene disaccoppiato.

Analisi termica: si calcolano le condizioni stazionare durante l'esercizio della CPU (coefficiente di scambio termico). Se si era interessati anche all'andamento nel tempo bisognava usare il calore specifico.

NB: il coefficiente di dilatazione termica serve per tenere conto delle dilatazioni sul componente per ricavare gli stress meccanici.

Modello del materiale: bilineare

Carichi e vincoli: termici

Esercitazione N.8 (Impostazione ELEMENTO)

Elementi piani a 4 nodi: 1GDL per ogni nodo.

NB: le incognite sono le temperature nodali.

Definizione dell'elemento termico: Thermal mass - Solid - quad4node 55

▲ Library of Element Types			X
Library of Element Types	Gasket Combination Thermal Mass Link Solid Shell ANSYS Fluid	Quad 4node 55 8node 77 Triangl 6node 35 Axi-har 4node 75 8node 78 Quad 4node 55	4 III >
Element type reference number	2 y Cancel	Help	

Option: K3 stesse opzioni in campo meccanico (plane)
Esercitazione N.8 (Impostazione MATERIALE)

Proprietà materiale: proprietà meccaniche + termiche

NB: si impostano due proprietà termiche, una per ogni materiale dell'analisi

RAME Conduttivity – Isotropic: KXX (coeff. di conducibilità) Il valore si potrebbe impostare anche in funzione della temperatura.

Define Material Model Behavior	
Material Edit Favorite Help	
Material Models Defined	Conductivity for Material Number 1
 Material Model Number 1 Thermal conduct. (iso) Material Model Number 2 Thermal conduct. (iso) 	Conductivity (Isotropic) for Material Numbe
	T1 Temperatures 0
	KXX 365
	Add Temperature Delete Temperature

Esercitazione N.8 (Impostazione MATERIALE)

Material - New Model

2) ALLUMINIO

Conduttivity - Isotropic: KXX (coeff. di conducibilità)

Esercitazione N.8 (Modellazione geometrica)

Geometria: modello piano di una semialetta della CPU

Si realizzano le due aree relative ai due materiali, rame ed alluminio, e poi si uniscono tramite il comando **GLUE**.

Esercitazione N.8 (Meshing)

Meshing – Size Cntrls – Manual Size – All Areas

Impostazione finezza mesh: meshing costante, elementi di lunghezza 0,0004 m

 □ Meshing Mesh Attributes MeshTool Size Cntrls	▲ Element Sizes on All Selected Areas	×
 □ ManualSize □ Global □ Areas 	[AESIZE] Element sizes on all selected areas SIZE Element edge length	0.0004
 All Areas ➢ Picked Areas ➢ Clr Size ☑ Lines 	ОК Арріу	Cancel Help

Esercitazione N.8 (Meshing)

Prima di effettuare la mesh, bisogna attribuire alle diverse aree il relativo materiale:

Mesh Attributes - Picked Areas: selezionare l'area e impostazione del set materiale

	Area Attributes	
Mesh Attributes Default Attribs	[AATT] Assign Attributes to Picked Areas	
All Keypoints	MAT Material number	
All Lines	REAL Real constant set number	None defined 🗨
➢ Picked Lines ➡ All Areas	TYPE Element type number	1 PLANE55 💌
➢ Picked Areas	ESYS Element coordinate sys	 Meshing Mesh Attributes
➢ Picked Volumes	SECT Element section	■ MeshTool ■ Size Cntrls
Volume Brick Orient		Mesher Opts
Mesh – Areas – Free: applic	B Mesh	
		➢ Lines
		□ Areas
		Mapped Mapreed

Esercitazione N.8 (Carichi e Vincoli)

Loads – Define - Apply - Thermal

Temperature: impostazione temperatura

Heat Flow: flusso di energia per unità di tempo

Convention: convezione (parete aletta)

Heat Flux: conduzione, flusso di energia per unità di tempo ed area (base rame)

Radiation: irraggiamento

Loads
Analysis Type
Fast Sol'n Optn
Define Loads
Settings
Apply
Thermal
Temperature
Heat Flow
Convection
Heat Flux
Heat Generat
Radiation

Esercitazione N.8 (Adiabaticità)

Condizioni di adiabaticità

Se la parete è esterna al modello, la parete viene considerata automaticamente adiabatica, lo stesso se è interna al modello, ed interrompe una simmetria del materiale.

Lo stesso se la parete è interna al modello (esempio GLUE tra le due aree), la parete tra il GLUE viene considerata sempre adiabatica.

Nelle pareti adiabatiche quindi non vanno imposti vincoli termici.

Esercitazione N.8 (Carichi e Vincoli: Termici)

Impostazione carichi e vincoli termici:

Heat Flux – On Lines: potenza entrante sull'area di superficie A, seleziono la linea di base

Convention – On Lines: coeff. di adduzione + bulk temperature (temp. ambiente) seleziono le linee su cui c'è lo scambio per convezione

Esercitazione N.8 (Soluzione e risultati ai nodi)

Solution - Solve - Current LS: classica soluzione lineare termica

Risultati: Nodal Solution

Esercitazione N.8 (Analisi MECCANICA)

Il file che contiene i risultati di **un'analisi strutturale** ha un estensione **.rst**, mentre per un **analisi termica** i risultati sono contenuti in file con estensione **.rth**

Passando da un analisi termica ad un analisi meccanica viene mantenuta la stessa discretizzazione, i valori delle temperature nodali vengono trasportati nell'analisi meccanica.

Per passare all'analisi meccanica la procedura è la seguente:

1) si torna nel preprocessore: è buona cosa cancellare i carichi termici (anche se non è obbligatorio).

Loads - Define Loads - Delete - Thermal - Heat Flux - Onlines

oppure: Delete - All Load Data - All Loads & Opts

Esercitazione N.8 (Analisi MECCANICA)

2) Preprocessor - Element Type - Switch Elem Type: si indica che si vuole passare dall'analisi termica a quella meccanica: Thermal to Struc

I Preferences I Preprocessor	NODES	
Element Type Add/Edit/Delete	Switch Elem Type	
Switch Elem Type	[ETCHG] Switch Element Types Depending on Analysis	
	Change element type	Thermal to Struc 💌
Remove DOFs		
Elem Tech Control	OK Canad	Hala
H Real Constants	Cancei	Нер
H Sections		
+ Modeling		

ANSYS ha mantenuto la mesh ma ha cambiato il tipo di elemento (si è passati al PLANE182, che è la versione più evoluta del PLANE42)

NB: passando da un analisi termica ad una meccanica e mantenendo la stessa mesh, bisogna creare correttamente la mesh fin dall'inizio in modo tale che vada bene sia per l'analisi termica e l'analisi meccanica.

Esercitazione N.8 (Opzioni di ELEMENTO)

Che tipo di comportamento bisogna scegliere per il PLANE182? Plain strain o Plain stress?

Sarebbe **Plain strain**, ma in realtà non è corretto perchè... stiamo andando a studiare la sollecitazione meccanica dovuta a dei campi termici di temperatura. Se usassimo Plain strain è come se avessimo vincolato le due pareti del dissipatore avanti e dietro: è come se non si potesse espandere e si creerebbero delle tensioni.

Quindi co lo stato di tensione piana si introducono delle tensioni che che in realtà non sarebbero presenti. Si usa quindi il **Plain stress** anche se lo spessore non è piccolo rispetto alle altre dimensioni (eventualmente si potrebbe impostare analisi 3D per ovviare a questa approssimazione).

Esercitazione N.8 (Proprietà MATERIALE)

Coefficiente di espansione termica

Material Models – Structural - Thermal Expansion - Secant coefficient – Isotropic

(Thermal Expansion Secant Coefficient for Material Number 1)
	Thermal Expansion Secant Coefficient for Material Number 1	
	Reference temperature	l
	T1 Temperatures ALPX	l
	Add Temperature Delete Temperature Graph	
l	OK Cancel Help	

Servono due informazioni: **coeff. di espansione** (rame 12.5e-6), + **reference temperature** (temperatura a cui non si hanno deformazioni, dissipatore a temperatura ambiente 20°C)

Esercitazione N.8 (Vincoli Meccanici)

Coupling/ceqn: GDL UY

Esercitazione N.8 (Vincoli Meccanici)

Carico termico: bisogna ricaricare i risultati dell'analisi termica ed applicare il campo di temperatura agli elementi.

Define Loads - Apply - Structural - Temperature - From Therm Analy Successivamente indicare dove è situato il file che contiene i risultati dell'analisi termica (file .rth).

Non avendo cambiato la mesh, non è cambiata la corrispondenza con i nodi tra l'analisi termica e meccanica!

 □ Apply □ Structural □ Displacement □ Force/Moment 	SMX = . 502E-03	
 B Pressure □ Temperature ○ On Lines 	[LDREAD], TEMP Apply Temperature from Thermal Analysis Identify the data set to be read from the results file	
➢ On Areas ➢ On Volumes	LSTEP,SBSTEP,TIME Load step and substep no.	
➢ On Keypoints ➢ On Nodes	or Time point	
On Node Components From Therm Analy	Fname Name of results file	Browse
I Uniform Temp ➢ On Elements		
➢ On Element Componer	OK Apply	Cancel Help
Pretnsn Sectn		

Esercitazione N.8 (Soluzione)

Bisogna cambiare le opzioni del solutore: soluzione elastoplastica.

Sol'n Contrls: small displacement time stemp 1 auto stepping on	Analysis Options Small Displacement Static Calculate prestress effects
	Time Control Time at end of loadstep 1 Automatic time stepping On • Number of substeps • On • Time increment I Number of substeps 1 Max no. of substeps 0 Min no. of substeps 0

Esercitazione N.8 (Soluzione)

Solution - Solve - Current LS

Soluzione analisi meccanica con campo di temperatura derivante dall'analisi termica

Risultati: von mises stress

E' ancora possibile visualizzare il campo di temperatura anche all'interno di un analisi meccanica: **Plot results - Nodal solution - Body temperature**


```
!pulisco e ricomincio da capo
 2
    FINISH
    /CLEAR
3
4
5
   definizione cartella di lavoro, facoltativa, non è necessaria se la imposto all
    !/CWD, 'D:\Daniele\Universita\MAGISTRALE\Materie\Progettazione Meccanica agli Ele
6
7
8
    !definizione nome del lavoro, se non lo imposto non viene sosvrascritta l'analis
    /FILNAME, esercitazione 8,0
9
10
11
    !definzioni variabili di progetto originali
    !H=0.050
12
    !B=0.0045
13
14
    'BT=0.002
15
16
    !convenzione con ventola funzionante
17
    !ADDUZIONE=45
18
    !TEMPFLUIDO=40
19
20
    !convenzione con ventola fuori uso
21
    ADDUZIONE=8
22
    !TEMPFLUIDO=50
23
24
    !definzioni variabili di progetto ottimizzate
    H=0.070
25
    B=0.001
26
    BT=0.0005
27
    ADDUZTONE=45
28
29
    TEMPFLUTDO=40
```

```
30
31
   !entro nel preprocessore
32
   /PREP7
33
34
   !definizione elemento termico
35
   ET, 1, PLANE55
36
37
   definizione materiale rame ed alluminio
38
   MPTEMP,,,,,,,,
39 MPTEMP, 1, 0
40 MPDATA, KXX, 1,, 365
41
   MPTEMP,,,,,,,,
42
   MPTEMP, 1, 0
   MPDATA, KXX, 2,, 180
43
44
45
   !definizione geometria
46
   RECTNG, 0, 0.004, 0, B,
    RECTNG, 0.004, 0.008+B-BT, 0, B,
47
48
   RECTNG, 0.008+B-BT, H, 0, BT,
   CYL4,0.008+B-BT,B,B-BT
49
50
51
   !stampa a schermo numero linee ed aree
52
   /PNUM,LINE,1
   /PNUM, AREA, 1
53
54
   !sottrazione area1 ed area4
55
56 ASBA,2,4
57
58
   !somma area5 ed area3
   AADD, 5, 3
59
60
61
   !operazione glue area1 ed area2
62 AGLUE, 1, 2
```

```
63
64
   !EOF end of file, ad intervalli regolari stoppo e provo il file
   !/EOF
65
66
67
   !selezione area1
68 ASEL, S, AREA, ,1
   !assegnazione materiale 1
69
70 AATT,1, ,1,0,
71
72
   !selezione tutto
73 ALLSEL, ALL
74
75 !selezione area3
76 ASEL, S, AREA, , 3
77 !assegnazione materiale 2
78 AATT,2, ,1, 0,
79
80 !selezione tutto
81 ALLSEL, ALL
82
83
   !finezza mesh delle aree
84 AESIZE, ALL, BT/5,
85
86
   !meshing delle aree
87
    AMESH, ALL
88
   !EOF end of file, ad intervalli regolari stoppo e provo il file
89
   !/EOF
90
91
92
   !applicazione del flusso sulla linea4
93 SFL, 4, HFLUX, 60/(0.05*0.05)*2,
```

94

95	applicazione della convezione sulle linee 7, 10 e 11
96	SFL,7,CONV,ADDUZIONE, ,TEMPFLUIDO,
97	SFL,10,CONV,ADDUZIONE, ,TEMPFLUIDO,
98	SFL,11,CONV,ADDUZIONE, ,TEMPFLUIDO,
99	
100	!fine preprocessore
101	FINISH
102	
103	!entro nel solutore
104	/SOL
105	
106	!avvio soluzione
107	SOLVE
108	FINISH
109	
110	!entro nel postprocessore
111	/POST1
112	
113	PLOTTO II Campo di temperatura ai nodi
115	FINSOL, IEMP,, 0
116	LEINE DADTE TEDMICA
117	TINE FAMIL TENHICA
118	FOF end of file, se voglio stoppare gui e vedere solo l'analisi termica
119	!/EOF
120	., 201
121	INIZIO PARTE MECCANICA
122	
123	!entro nel preprocessore
124	FINISH
125	/PREP7

126 127 !cancellazione carichi termici 128 LSCLEAR, ALL 129 130 ! element thermal change to structural, cambio tipo di elemento 131 ETCHG, TTS 132 133 !definizione proprietà del materiale 134 MPTEMP,,,,,,, 135 MPTEMP, 1, 0 136 UIMP, 1, REFT, ... 20 137 MPDATA, ALPX, 1, , 12.5e-6 138 MPTEMP,,,,,,, 139 MPTEMP,1,0 140 UIMP, 2, REFT, ,, 20 141 MPDATA, ALPX, 2,, 24.2e-6 142 MPTEMP,,,,,,, 143 MPTEMP,1,0 144 MPDATA, EX, 1,, 110e9 145 MPDATA, PRXY, 1,, 0.35 146 MPTEMP,,,,,,,, 147 MPTEMP,1,0 148 MPDATA, EX, 2,, 68, 9e9 149 MPDATA, PRXY, 2, , 0.33 150 TB, BISO, 2, 1, 2, 151 TBTEMP,0 152 TBDATA,,80e6,2200e6,,,, 153 TB, BISO, 1, 1, 2, 154 TBTEMP,0 155 TBDATA,,60e6,1380e6,,,, 156 157 !impostazione vincolo UX linea4 158 DL,4, ,UX,0

```
159
160
    !impostazione vincolo UY linea1, 5 e 9
161 DL,1, ,UY,0
162 DL.5, .UY.0
163 DL,9, ,UY,0
164
165 !EOF end of file, ad intervalli regolari stoppo e provo il file
    !/EOF
166
167
    !comando coupling, seleziono linee 3 e 12, selezione nodi sulle linee 3 e 12, e poi coupling
168
169
170
    !LSEL line select
171
    LSEL, S, LINE, , 3
172
173 !LSEL also select
174 LSEL, A, LINE, ,12
175
176 !selezione nodi sulle linee attive, cioè linea 3 e 12
    NSLL,S,1
177
178
179
    coupling di tutti i nodi attivi sul gdl UY!
    CP,1,UY,ALL
180
181
182
    !selezione tutto
183
    ALLSEL, ALL
184
185
    !importazione file che contiene i risultati dell'analisi termica
     LDREAD, TEMP, , , , 'esercitazione 8', 'rth', ' '
186
187
188
    !fine preprocessore
189
     FINISH
190
    !entro nel solutore
191
192 /SOL
```

```
193
194
    !impostazione automatic time stepping
195
     AUTOTS,1
196
    !impostazione time end of loadstep
197
198
     TIME,1
199
200
    !avvio soluzione
201
     SOLVE
202
    FINISH
203
204
    !entro nel postprocessore
205
     /POST1
206
207
    !plotto equivalent plastic strain
208
     PLNSOL, NL, EPEQ, 0,1.0
209
210
    !plotto il campo di temperatura ai nodi
211
     PLNSOL, BFE, TEMP, 0,1.0
212
```

Esercitazione N.9 (Paletta aeronautica, analisi termo-strutturale)

Determinare il campo di temperatura, il campo tensionale e deformativo, di una paletta per turbina in superlega di nickel in condizioni di esercizio stazionarie.

N.b. Studio estremamente semplificato, su geometria di massima e dati di letteratura

(Paletta aeronautica, analisi termo-strutturale)

Condizioni stazionarie di esercizio:

 $t_{H} = 1123 K$ $t_{L_{1}} = 773 K$ $t_{L_{2}} = 673 K$ $\Delta p_{intradosso-estradosso} = p_{i} - p_{e} = 5 bar$ $n = 10000 \frac{giri}{\min}$ h = 30 cm Distanza base abete – asse di rotazione

La temperatura media intorno all'intera ala della paletta tiene conto del raffreddamento a film. La temperature inferiori sono misurate in due punti di attacco paletta-tamburo.

L' "abete" è vincolato al disco/tamburo

(Paletta aeronautica, analisi termo-strutturale)

Materiale: superlega di nickel, Nimonic 90

	T = 293 K	T = 573 K	T = 1073 K	Unità
Tensione di rottura σ_r :	1175	1080	660	MPa
Tensione di Snervamento σ_{i}	s: 750	680	530	MPa
Modulo di Young <i>E</i> :	205	190	150	GPa

Coeff. di Poisson:

Densità:

Coeff. di espansione termica medio nel range di temperatura 293-1073 k:

v = 0.3

$$\rho = 8180 \quad \frac{kg}{m^3}$$
$$\alpha = 16 \cdot 10^{-6} \quad \frac{m}{m K}$$

(Paletta aeronautica, analisi termo-strutturale)

Materiale: superlega di nickel, Nimonic 90

	T = 293 K	T = 573 K	T = 1073 K	Unità
Conducibilità termica <i>K</i> :	11.5	15.5	23.0	$\frac{W}{m K}$
Calore specifico <i>c</i> :	450	510	650	J Kg K
Temperate	ura di <mark>f</mark> usione:	$T_{M} = 1583$	3–1643 K	

(Paletta aeronautica, analisi termo-strutturale)

New:

- Modellazione di problemi tridimensionali.
- Importazione geometrie mediante formati di interscambio a partire da un modello CAD.
- Proprietà dei materiali variabili con la temperatura: descrizione del comportamento meccanico ad elevate temperature.
- Problematiche e tecniche di discretizzazione in problemi tridimensionali.
- Ottimizzazione del numero di elementi dell'analisi.
- Applicazione carichi di tipo centrifugo.

Esercitazione N.9 (Informazioni preliminari)

Per la modellazione 3D si usano principalmente i seguenti elementi:

- parallelepipedo 8 nodi (brik): si usa con geometrie semplici o regolari

- tetraedrico, 4 nodi o 10 nodi (nodi intermedi): si usa con superfici particolari o curve

Se si usano elementi con nodi intermedi (funzioni di forma quadratiche), la funzione di forma descrive meglio il campo di spostamento e quindi la descrizione globale è migliore: a parità di discretizzazione (mesh) si ha un risultato migliore. Sempre a parità di discretizzazione però il tempo di calcolo aumenta. Infine a parità di tempo di calcolo si ha la stessa precisione con o senza nodi intermedi.

NB: nello studio semplificato della paletta manca il creep

Operazioni da compiere:

- 1. modellazione
- 2. analisi termica
- 3. analisi meccanica

Esercitazione N.9 (Modellazione 3D)

Modellazione di volumi: stesse operazioni e modalità della modellazione delle aree. Tale metodo si utilizza per volumi e forme semplici, altrimenti...

Importazione geometrie CAD: si utilizza per geometrie complesse e di non semplice realizzazione tramite gli strumenti di ANSYS.

Si utilizzano delle funzioni di importazione presenti nel programma.

Formato classico di importazione: .igs

FILE – IMPORT – IGES

Esistono altri formati di importazione più complessi ma sono proprietari: ad esempio Solid Edge utilizza il formato PARASOLID (PARA...)

	(aslatta)
AINSYS Multiphysics Utility Me	enu (paletta)
<u>File</u> <u>Select</u> <u>List</u> <u>Plot</u>	Plot <u>C</u> trls WorkPlane
Clear & Start New Change Jobname Change Directory Change Title	צו עוד Powrgrph
Resume Jobname.db Resume from	🛞 1
Save as Jobname.db Save as Write DB log file	
Read Input from Switch Output to	•
List File Operations ANSYS File Options	▶ ▶ .
Import	IGES
Export Report Generator Exit	CATIA CATIA V5 Pro/E UG SAT
	PARA

Esercitazione N.9 (Importazione CAD 3D)

Si importa il modello CAD 3D della paletta.

NOTE

1) controllare sempre tramite l'importazione se ANSYS dopo l'importazione ha creato il volume tramite il comando LIST

2) controllare sempre le unità di misura dei modelli CAD importati: di solito i formati vengono importati con le seguenti unità di misura:

IGES in millimetri PARASOLID in metri

Non è detto che le unità di misura coincidano con quelle impostate nel modello CAD: controllare!

Esercitazione N.9 (Impostazione ELEMENTO)

Definizione tipo di elemento: tetraedrico termico a 10 nodi

Esercitazione N.9 (Impostazione MATERIALE)

Proprietà del materiale: analisi termica + conducibilità

Thermal - Conducivity – Isotropic + ADD TEMPERATURE

Bisogna definire le proprietà di conducibilità alle differenti temperature (vedere tabelle iniziali).

	Conductivity for Ma	iterial Number 1	and the second		×			
l	Conductivity (Isotropic) for Material Number 1							
l		T1	T2	T	3			
l	Temperatures	293	573	1073				
	KXX	11.5	15.5	23				
۱								
		1	1					
l	Add Temperature	e Delete Temper	rature		Graph			
			OK Ca	ncel	Help			

Esercitazione N.9 (Meshing)

Nella discretizzazione della paletta bisogna identificare le zone critiche: incastri e raccordi. In queste zone critiche bisogna infittire la mesh. Si effettua una mesh uniforme e poi si infittisce dove è necessario(es. nei raccordi).

NB: bisogna stare sotto i 32.000 elementi o nodi della versione didattica di ANSYS.

Meshing - Mesh Tool: meshatore automatico (non utilizzare)

Meshing - Mesh Attributes: nel caso in cui bisognasse impostare diversi materiali

NB: per creare una mesh di volume prima bisogna creare la mesh delle aree e da quest'ultima si costruisce la mesh degli elementi anche all'interno del volume.

Meshing - Size Cntrls - Manual Size - Areas - ALL Areas

Selezionare tutte le aree ed assegnare una mesh globale a tutte le are della palette di 0.0035 mm

Esercitazione N.9 (Meshing)

Meshing - Size Cntrls - Manual Size - Areas – Picked Areas

Selezionare le aree in cui si vuole infittire la mesh: ad esempio i raccordi della paletta, ed assegnare una mesh di 0.0015 mm.

Manual Size - Global - Area Cntrls

EXPND: espande o contrae gli elementi della mesh a seconda del vincolo imposto sulle aree

TRANS: indica la velocità di espansione dell'elemento dalla superficie verso l'interno, cioè la velocità di transizione da elementi fini a grossi della mesh.

NB: per maggiori dettagli vedere l'HELP.

▲ Global Element Sizes				×
[MOPT] Global internal element sizing (areas o	only)			
EXPND Element expansion factor-		1		
- use 0.5 (fine) thru 4.0 (coarse).				
TRANS Mesh transition factor -		1.5		
- use value of 1.0 (gradual) thru 4.0 (rapid).				
ОК	Cancel		Help	
NATES AND A STREET	2 11 2 2			

Esempi

Esempi

Manual Size - Global - Volu Cntrls

TETEXPND: indica la modalità del passaggio dagli elementi di area a quelli di volume. Questa opzione è utilizzata per dimensionare gli elementi interni di un volume in base alla dimensioni degli elementi sul contorno del volume stesso.

▲ Interior Tet Element Sizing Co	ontrol for RV52	×
[MOPT] Global internal tet elem	ent sizing	
TETEXPND Tet element expansio	on	þ
- use 0.1 (fine) thru 3.0 (coars	se).	
- recommended values betw	een 0.5 and 2.0	
ОК	Cancel	Help

h	ysics Utility Menu (p	oaletta)		
	<u>L</u> ist <u>P</u> lot Plo	t <u>C</u> trls <u>W</u> orkP	lane Pa <u>r</u> an	neters <u>M</u> ac
6	Files	•		
It	Status	In the second secon	bal Status	
	Keypoint	• Gra	phics	•
1	🔨 /STAT Comm	and		
	File			
	HODEL INF	0 R H A T I O N		
Ħ	Keypoints Lines Areas Volumes	Largest Nunber 197 293 200 100	Nunber Def ined 197 293 100 1	Number Selected 197 293 100 1
	Finite element mod	el sunnary:		
	Nodes Elements	Largest Number 	Number Defined 27589 16291	Number Selected 27589 16291
	Element types Real constant sets Material property :	1 0 sets 1	1 0 1	n.a. n.a. n.a.
	Coupling Constraint equation		0 0	n.a. n.a.

Esercitazione N.9 (Carichi termici)

Applicazione delle temperature alle singole aree:

Define Loads - Thermal - Temperature - On Areas

Superficie paletta, raccordi e base 1123 K 🖌

Tre superfici laterali di incastro 773 K

Superfici della base 673 K 💊

Controllo: List - Loads - DOF - Constrains -All Area

Esercitazione N.9 (Soluzione)

Si effettua un analisi non lineare perché le proprietà variano con la temperatura.

Impostazione analisi non lineare:

Solution - Analysis Type - Sol'n Controls

Automatic step on Time 1

Time Central		
Time Control		
Time at end of loadstep	1	
Automatic time stepping	On	•
Number of substeps		
 Time increment 		

Esercitazione N.9 (Risultati)

General Postproc - Plot Results - Nodal Solu – Nodal Temperature

Esercitazione N.9 (Analisi MECCANICA)

Per passare all'analisi meccanica:

1) si torna nel preprocessore, è buona cosa cancellare i carichi termici: Delete - All Load Data - All Loads & Opts

2) Preprocessor - Element Type - Switch Elem Type: si indica il passaggio dall'analisi termica a quella meccanica: Thermal to Struc

I Preferences I Preprocessor	- NODES	
Element Type	Switch Elem Type	×
Add/Edit/Delete	A switch clean type	
Switch Elem Type	[ETCHG] Switch Element Types Depending on Analysis	
Add DOF	Change element type	Thermal to Struc 👻
Remove DOFs		·
Elem Tech Control		
	OK Cancel	Help
Material Props		
Sections		
Modeling		

Esercitazione N.9 (Proprietà del MATERIALE)

Si assume che il materiale sia indefinitamente elastico, si assegna solo il Modulo di Young E al variare della temperatura: si considera il problema lineare, non viene impostata la parte plastica.

NB: per verificare se nell'analisi si è superato o meno il valore della sigma di snervamento, si controlla nei risultati la sigma equivalente di Von-Mises, e si verifica se non si è superato il valore limite in alcuni punti della paletta, a seconda della temperatura locale.

Si considera il coefficiente di espansione termica costante.

Material Models - Thermal Expansion - Secant coefficient - Isotropic

Come temperatura di riferimento si imposta 773 K, quella media nella parte centrale della paletta.

Thermal Expansi	on Secant Coefficient for Material Number 1
Reference tempe	erature 773
Temperatures	T1
ALPX	1.6E-005

Esercitazione N.9 (Carichi e Vincoli – 1º Parte)

Si risolve il problema aggiungendo i carichi uno alla volta, prima gli stress dovuti al campo termico e poi quelli dovuti alla forza centrifuga.

1. Carico termico: ricaricare i risultati dell'analisi termica

Define Loads - Apply - Structural - Temperature - From Therm Analy

indicare dove è salvato il file che contiene i risultati dell'analisi termica .rth

Apply Structural Displacement	SMX =.502E-03	
	Apply TEMP from Thermal Analysis	
Temperature	[LDREAD], TEMP Apply Temperature from Therm	nai Anaiysis
P On Lines	Identify the data set to be read from the results file	lle
➢ On Areas		
➢ On Volumes	Load step and substep no.	
➢ On Keypoints	or	
➢ On Nodes	Time-point	
On Node Components	Fname Name of results file	Rowre
Iniform Temp		
➢ On Elements		
➢ On Element Component	ОК Арр	ply Cancel Help
⊞ Inertia		
Pretnsn Sectn		

Esercitazione N.9 (Carichi e Vincoli – 1º Parte)

Asse di riferimento x-circonferenziale y-assiale z-radiale

Sulle superfici che si appoggiano al tamburo bloccano la UX e la UZ. Bisogna applicare i vincoli uno alla volta, prima UX e poi UZ. (anche sulle superfici simmetriche)

La soluzione in queste zone non sarà corretta a causa dell'approssimazione introdotta dai vincoli.

Si blocca la UY per due nodi sulla superficie laterale.

In questo modo il sistema è isostatico.

Esercitazione N.9 (Soluzione)

Solution - Solve - Current LS

Soluzione dell'analisi meccanica con campo di temperatura derivante dall'analisi termica.

Risultati: stress - von mises stress

Esercitazione N.9 (Risultati)

Per evidenziare meglio le zone in cui si supera il limite elastico:

Plotcrls – Style – Contours – Uniform Contours: user specific

	User specified
User specified intervals	
VMIN Min contour value	0
VMAX Max contour value	530e6
VINC Contour value incr	

Specifico il valore massimo corrispondente alla sigma di snervamento 530 MPa

Esercitazione N.9 (Risultati)

In questo modo si evidenzia che le zone maggiormente sollecitate sono quelle in corrispondenza dei vincoli in cui la soluzione non è corretta.

Esercitazione N.9 (Carichi – 2° Parte)

Si aggiunge ora la **presenza del fluido**, impostando una differenza di pressione di 5 bar = 0.5 e6 Pa, sulla superficie della paletta.

Define Loads - Apply - Structural – Pressure – On Areas

Viene selezionata la superficie interna della paletta: pressione positiva entrante.

Ricalcolo della soluzione

Esercitazione N.9 (Carichi – 3° Parte)

Forza centrifuga: si aggiunge il carico dovuto alla forza centrifuga (bisogna assegnare la densità de materiale!)

Define Loads - Apply - Structural – Inertia – Angular Veloc

Global: bisogna dare il valore della velocita angolare ed indicare l'asse di rotazione tra uno dei tre assi coordinati x,y,x. In questo caso non si può usare global perché gli assi coordinati non coincidono con l'asse di rotazione della paletta.

On Components: in questo caso si definisce l'asse di rotazione, ma bisogna creare prima un gruppo identità, un «componet» di nodi ed elementi.

Select – Comp/Assembly – Create Componets Si assegna il nome e si selezione «element»

WEFF-KIKIKI	
▲ Create Component	
[CM] Create Component	
Cname Component name	Paletta
Entity Component is made of	Elements 🔹
OK Apply	Cancel Help
	Vieta

Esercitazione N.9 (Carichi – 3° Parte)

Angular Veloc - On Components – by Axis:

Velocità angolare (OMEGX): 10000*6.28/60

Asse di rotazione fissato impostando due punti fissi sull'asse stesso: x1=0, z1=-30cm, y1=0 x2=0, z2=-30cm, y2=1 valore qualsiasi

Apply Angular Velocity On Components		x
[CMOMEGA] Apply Angular Velocity On Components CM_NAME Component Name OMEGX Magnitude	PALETTA	
X1,Y1,Z1 Rotational Axis / Pt 1 X2,Y2,Z2 Rotational Axis / Pt 2	0 -30 0 -30	0 1
KSPIN Spin softening key		

Ricalcolo della soluzione

Esercitazione N.9 (Risultati)

Nodal solution – Von mises stress

Esercitazione N.10 (Braccetto sospensione)

Il componente consente il collegamento tra telaio in carbonio e braccetto della sospensione. Verificarne la resistenza in esercizio.

L'attacco viene reso solidale al telaio mediante un collegamento bullonato (3 bulloni a 120° tra loro). Il carico *F* proveniente dal braccetto, è trasferito all'attacco come mostrato in figura: nella parte terminale del braccetto è avvitato un uni-ball che lo collega ad un perno (snodo sferico), a sua volta incernierato all'attacco. La direzione della forza esercitata dal braccetto giace su un piano a perpendicolare all'asse del perno ed è ivi inclinata di 45°, come riportato in figura. La si può considerare agente nella zona di mezzeria del perno.

N.b. Per riprodurre la corretta sollecitazione sull'attacco della sospensione è indispensabile modellare il **contatto** con il perno.

Esercitazione N.10 (Braccetto sospensione)

F=10000 N

Attacco sospensione in alluminio: $E=70 \ GPa$ v=0.33 $\sigma_y=260 \ MPa$ $Mt=3000 \ MPa$

Perno in acciao: E=200 GPa v=0.3

Esercitazione N.10 (Braccetto sospensione)

New:

- Modello a geometria mista, in parte importata, in parte creata nel codice.
- Importanza e difficoltà legate alla modellazione di vincoli e carichi equivalenti al problema reale.
- Gestione del contatto e problematiche: possibilità di studiare non solo componenti singoli, ma anche interi sistemi meccanici.
- Procedura di creazione del contatto, elementi contact e target, non linearità dovute al contatto stesso.

Esercitazione N.10 (Introduzione CONTATTO)

Nel caso si dovesse analizzare un assemblato, si cerca sempre di scindere il problema ed analizzare singolarmente le varie parti che compongono l'assieme, individuando ed analizzando le forze che si scambiano nei punti di contatto.

Quando non è possibile studiare le singole parti, bisogna analizzare l'assieme nel suo complesso e modellare il problema con le forze che si scambierebbero i singoli componenti a contatto reciproco: **bisogna quindi modellare il contatto!**

Gestione del contatto da parte di ANSYS

Il programma ha degli elementi piani che vanno a ricoprire le zone dei componenti che si scambiano il contatto reciproco:

- Elementi target
- Elementi contact

Esercitazione N.10 (Importazione CAD 3D)

FILE - IMPORT - IGES: AttaccoSospensione.IGS

Si importa solo la base e non il perno che verrà modellato in seguito con ANSYS.

Per effettuare un analisi FEM vengono di solito importati modelli CAD che hanno geometrie semplificate, ed in particolare che riportano solo le parti essenziali per condurre l'analisi. Importare un modello con tutti i dettagli geometrici produrrebbe solamente un aumento non giustificato dei tempi di calcolo.

NB: Verificare sempre nell'importazione sia stato creato il volume: List – Volumes

Preprocessor - Numbering Ctrls - Merge Items – ALL

Si imposta la tolleranza per l'unione (merge) degli elementi vicini: serve a ripulire ed a semplificare la geometria importata.

[NUMMRG] Merge Coincident or Equivalently Defined Items			
Label Type of item to be merge	All	•	
TOLER Range of coincidence			
GTOLER Solid model tolerance			
ACTION Merge items or select?			

Esercitazione N.10 (Modellazione)

MODELLAZIONE DEL PERNO TRAMITE ANSYS

Modelling – Create – Volumes – Cylinder - Solid Cylinder non si può fare perché non coincidono gli assi!

Bisogna creare il volume per estrusione:

1) Si crea un area rettangolare

2) Si estrude per rotazione intorno ad un asse:

Operate – Estrude – Areas – About Axis Si seleziona l'area e poi si definiscono i due punti dell'asse di rotazione

3) Si imposta l'angolo di rotazione di 360°

<u>Dimensioni del perno</u> Lunghezza: 70 mm Diametro: 8 mm

Esercitazione N.10 (Modellazione)

Esercitazione N.10 (Modellazione)

Element type: solid 10node187

Materiale: acciaio ed alluminio

NB: al perno viene assegnato un materiale con modulo di Young pari a 200e4. Viene fatto più rigido perché nella nostra analisi è un elemento che serve solo per trasmettere la forza!

Discretizzazione: bisogna infittire la mesh nelle zone critiche: attacco perno

NB: Non è consigliato avere la stessa dimensione della mesh per le aree del contatto e per le aree normalmente meshate: uno delle due mesh deve essere più fitta dell'altra. In particolare dovrà essere più fitta per la zona che interessa il contatto e più grande per gli elementi che verranno ricoperti da quelli target.

Esempio: Base: 4 mm Parti in contatto della base: 1 mm Trans: 1.5 Area perno: 1.5 mm

 Selezione delle aree della base:
 select - entities - volumes - by num pick: selezionare base perno select - entities - areas - attached to - volumes: ok

NB: in questo modo sono attive solo le aree attaccate al volume relativo!

2) Si applica la mesh

3) Alla fine si seleziona di nuovo tutto select - everything

Mesh di 1 mm, il resto del pezzo di 4 mm (area elementi contact)

Selezione del perno:
 select - entities - volumes - by num pick: selezionare volume perno
 select - entities - areas - attached to - volumes: ok

NB: in questo modo sono attive solo le aree attaccate al volume relativo!

2) Si applica la mesh

3) Alla fine si seleziona di nuovo tutto select - everything

Mesh di 1,5 mm Area elementi target

Esercitazione N.10 (Vincoli)

I bulloni agenti sulla base, bloccano tutti i gradi di liberta: ALL DOF

Esercitazione N.10 (Vincoli)

Il contatto con il perno funge da vincolo.

Per mantenere l'equilibrio in direzione assiale, blocco l'area della base inferiore ad esempio verso UY.

Esercitazione N.10 (Carico)

Scomporre il carico concentrato secondo le sue componenti ed applicarlo ad un nodo crea problemi all'analisi lineare.

Per questo motivo si applica il carico su un gruppo di nodi appartenenti al perno:

1) Select – node - by num pick - box

n.389 nodi selezionati

2) Plot nodes

3) Applicare le forze concentrate ai nodi selezionati

Fx: -10000/1.41/389

Contact Manager

- 1) selezione aree targer: perno
- 2) selezione arre contact: aree forate interne alla base

Contact Wizard

3) impostare le opzioni di contatto

<u>M</u> acro Me <u>n</u> uCtrls <u>H</u> elp				
		• 差		
Contact Manager			Contact Manager	×
🛐 🚰 🔀 Contact & Target	- 🕅 🔹 🍇	🗐 🗊 No Model Context	🚽 🛛 🔀 Choose a result item	*
Contact Pairs				۲
ID Contact Behavior	Target	Contact	Pilot Node Pilot Name	<u></u>
3 Standard	Flexible	Surface-to-Surface	No pilot	

Contact Wizard	A contact pair consists of a target surf You will first define the target surface.	face and contact surface.
	Target Surface:	Target Type:
	• Areas	• Flexible
	 Body (volume) 	C Rigid
	C Nodes	Rigid w/ Pilot
	C Nodal Component	 Pilot Node Only (Advanced Option)
		Pick Target
	< <u>B</u> ack <u>N</u> ext >	C <u>a</u> ncel <u>H</u> elp

Selezionare le aree target

Contact Wizard			
	The contact surface moves into the tar	get surface.	
	Contact Surface:	Contact Element Type:	
	C Lines	Surface-to-Surface	
	 Areas 	 Node-to-Surface 	
	 Body (volume) 		
	 Nodes 		
	Nodal Component		
		Pick Contact	
		Selezionar	e le aree coi
	< <u>B</u> ack <u>N</u> ext >	Cancel <u>H</u> elp	

Esercitazione N.10 (Gestione del CONTATTO)

Dopo aver impostato il contatto, nell'element type compaiono automaticamente gli elementi target e contact.

ANSYS Main Menu	
Preferences Preprocessor	Element Types
Element Type	
Add/Edit/Delete	Defined Element Types:
Add DOF	Type 1 SOLID187
Remove DOFs	Type 2 TARGE170
Elem Tech Control	Type 3 CONTA174
Real Constants	
Material Props	
Sections Modeling	
Meshing Meshing	
Checking Ctrls	

Esercitazione N.10 (Soluzione)

Solution - Analysis type - Sol'n ctrl: small displacement time at end of loadstep 1 automatic steppin on

Contourn plot Von mises stress

Esercitazione N.10 (Soluzione)

Selezionare solo gli elementi a contatto (quelli target): select - entities - volumes - by num pick: selezionare volume base select - entities – element - attached to – volumes: ok

Esercitazione N.10 (Soluzione)

Esercitazione N.11 (Strutture a spessore sottile)

Studiare la piastra rettangolare a spessore costante in figura, appoggiata (snodi sferici) sui lati lunghi ed incastrata sui lati corti. Sulla piastra agisce una pressione uniforme *p*.

Si studi inoltre l'ulteriore problema in cui:

- il carico rimane inalterato.

- i vincoli su tutti e quattro i lati impediscono le sole traslazioni nel piano della piastra, mentre in direzione perpendicolare si comportano come molle lineari con costante elastica *K*=10 *N/mm*.

Esercitazione N.11 (Strutture a spessore sottile)

New:

- Elementi shell per problemi spaziali a spessore sottile: piastre, gusci, lamiere, etc.
- Elementi molla-smorzatore.
- Operazioni di duplicazione di entità geometriche, nodi, elementi.
- Collegamento elementi mediante merging.
- Cenni su comportamento ortotropo/anisotropo dei materiali.

Esercitazione N.11 (Introduzione)

Per questo tipo di analisi si usa un elemento di tipo piano SHELL a 4 o 8 nodi.

Questo elemento rappresenta una porzione del volume della piastra che in realtà possiede un proprio spessore.

E' come se l'elemento fosse posizionato sulla superficie media della piastra.

Quando si effettua la modellazione geometrica, si realizza in realtà la superficie media della piastra e si discretizza tale superficie con gli elementi SHELL. Questi elementi in realtà considerano anche il volume, che può essere impostato all'interno delle Real Constat.

Se si hanno piastra con spessori variabili, si possono associare i vari spessori agli elementi SHELL sempre tramite le Real Constant (si imposta il valore dello spessore ai nodi).

Esercitazione N.11 (Impostazione ELEMENTO)

Elemento utilizzato: elastic 4node63 plastic 4node63

L'elemento più generale che verrà usato in questa esercitazione: elastic 4node181

NB: i gradi di libertà dei nodi degli elementi SHELL sono 6 = 3 forze + 3 momenti (3 spostamenti e 3 rotazioni)

Library of Element Types					×
Library of Element Types		Structural Mass Link Beam Pipe Solid Shell Solid-Shell	•	Elastic 4node 63 8node 93 4node 181 8node 281 Hyper 4node181 4node 181	•
Element type reference number		1			
ОК	Apply	Cancel		Help]

Esercitazione N.11 (Real Constant)

Attraverso le Real Constant si imposta lo spessore della piastra: si imposta il valore ai 4 nodi a 2 mm

Real Constant Set Number 1, for SHELL181	L X					
Element Type Reference No. 1						
Real Constant Set No.	1					
Real Constants for SHELL181						
Shell thickness at node I TK(I)	2					
at node J TK(J)	2					
at node K TK(K)	2					
at node L TK(L)	2					
Element X-axis rotation THETA						

Impostazione materiale: Modulo E = 200 e5 N/mm² Poisson = 0.3

Esercitazione N.11 (Modellazione)

Si modella ¼ della piastra sfruttando la geometria.

Esercitazione N.11 (Meshing)

Si imposta lo stesso numero di elementi su tutti i lati.

Si effettua il sizing delle aree con 1 mm (è necessario sapere quanti sono i nodi e gli elementi per la 2° parte dell'esercitazione)

Mesh - Mapped - 3 or 4 side

																	_	_					_		_		_	_				_								
													+								+		T	+																
		+ +					+	+		-	+	+	+	+		-	-	-	-	+	+	+	+	+	⊢				+	-	+		-	+	-	+		+		
	-	+ +	-		-	-	+-	+		-	+	+	+	+		-	-	-	-	+	+	+	+	+	⊢				+	+	+		-	+	-	+	-	+		
	-	+ +	_		-	-	+	+		-	-	+	+-	-		-	-	-	-	-	+	+-	+	+	-				-	-	+		-	-	-	-	-	-		_
	-	F I					—	Ε.				_	—	Ŧ							-		₽-	—	Ŧ.	F				_	Ŧ.					_	-	Ŧ.		
												4	1						_		4	1	Į.							1										
	—						Ţ	Ę_					—	Τ_									Į_	1	Ţ_						Ţ_							Ţ_		
							+				+		+						-		+	+	+	+	+				+		+			+						
							+	+		-	+		+	+			-	-	-	+	+		+	+	⊢				+	+	+		-	+	-	+		+		
	-	+ +					+	+		-	+	+	+	+		-	-	-	-		+	+	+	+	+				+	+	+		-	+	-		+	+		
	-	+ +	_			-	+	+		-	-	+	+-	-		-	-	-	-	-	+	+-	+	-	-				-	-	-		-	-	-	-	-			_
	_	+ +	_			_	+-	+		-	-	+	+	-		-	-	-	-	+	+	+	+	+-	+				-	-	+		-	-	-	-	-	-		_
	—	F	_	F		_	—	F-			_	-	+	Ŧ				_		_	-	-	₽	+-	Ŧ-	F			_	_	Ŧ-				_	_	—	Ŧ.		
	—	F I					—	F_					—	Ŧ.							_		Į_	—	Ţ_	F					Ţ_						—	Ţ_		
	—						Ţ	Γ_					—	Τ_									Į_		Τ_						Ţ_							Ţ_		
								Γ.															L		L						L									
Y																																								
								Г						T									Т		T						T							T		
Z	72	t i		F			Ŧ	F	F				Ŧ	Ŧ	F						+		Ŧ	Ŧ	F	F					Ŧ			-			+	F	F	

Esercitazione N.11 (Vincoli)

Impostazione vincoli ¹/₄ della piastra: on lines

Per la simmetria i vincoli sono: lato lungo: uy, rotz, rotx

lato corto: ux, rotz, roty

Esercitazione N.11 (Carichi)

Per impostare il carico di pressione sull'area è necessario conosce il verso della normale uscente all'area:

Plotcrtl – Symbols – ADIR (on)

Il verso positivo della pressione segue quello della normale uscente.

In questo caso il valore della pressione essendo entrante è di -2 N/mm².

If Constant value then: VALUE Load PRES value	-2
LKEY Load key, usually face no. (required only for shell elements)	1

Esercitazione N.11 (Soluzione)

Solution - Solve - Current LS: soluzione lineare

Risultati: stress - von mises stress

Esercitazione N.11 (Risultati)

Risultati: deformata

Si sostituiscono i vincoli lungo i lati con degli elementi molla: combin 14

Element Type: combination - spring - damper14 (vedere HELP molla+smorzatore)

Esercitazione N.11 (Real Constant)

Real constant: rigidezza della molla k = 10 N/mm

Real Constant Set Number 2, for COMBIN14	×
Element Type Reference No. 2	
Real Constant Set No.	2
Spring constant K	10
Damping coefficient CV1	
Nonlinear damping coeff CV2	
Initial Length ILEN	
Initial Force IFOR	
OK Apply Cancel	Help

Esercitazione N.11 (Vincoli)

Bisogna creare dei keypoing lungo i lati sui quali verranno collegati gli elementi combin:

Create – Keypoint - In Active CS: 0, 0, -2

▲ Create Keypoints in Active Coordinate System	
[K] Create Keypoints in Active Coordinate System	
NPT Keypoint number	
X,Y,Z Location in active CS	0 0 -2
OK Apply	Cancel Help

Si creano le linee che uniscono i keypoint:

Create – Lines – Straight Line: 1,5

In pratica unisco il punto a coordinata y=-2 con l'origine con una linea

Mesh attributes: selezionare linea, proprietà, real const, impostare 2

▲ Line Attributes	
[LATT] Assign Attributes to Picked Lines	
MAT Material number	1 🔹
REAL Real constant set number	2
TYPE Element type number	2 COMBIN14 -
SECT Element section	None defined 🗨
Pick Orientation Keypoint(s)	□ No

Meshing - manual size - lines: 1 elemento

[LESIZE] Element sizes on picked lines	
SIZE Element edge length	
NDIV No. of element divisions	1
(NDIV is used only if SIZE is blank or zero)	
KYNDIV SIZE,NDIV can be changed	Ves
KYNDIV SIZE,NDIV can be changed SPACE Spacing ratio	Ves
KYNDIV SIZE,NDIV can be changed SPACE Spacing ratio ANGSIZ Division arc (degrees)	Ves
KYNDIV SIZE,NDIV can be changed SPACE Spacing ratio	Ves

Mesh - lines: selezionare la linea

Replicazione dell'elemento per tutti i nodi presenti sui lati, prima x e poi y.

Modelling - Copy - Lines: selezionare la linea

Numero di copie inclusa l'originale: 51 lungo x, 26 lungo y distanza 1 mm

[LGEN]		
ITIME Number of copies -	51	
- including original		
DX X-offset in active CS	1	
DY Y-offset in active CS	[LGEN]	
DZ Z-offset in active CS	ITIME Number of copies -	26
KINC Keypoint increment	- including original	
NOELEM Items to be copied	DX X-offset in active CS	
	DY Y-offset in active CS	1
	DZ Z-offset in active CS	

Risultato della replicazione dell'elemento.

Bisogna ora collegare i nodi creati con la duplicazione degli elementi combine ai rispettivi nodi della piastra: infatti la duplicazione ha creato 2 nodi sovrapposti, 1 della piastra e 1 dell'elemento combine.

Preprocessor - Numebr Ctrl – Merge Items: node

[NUMMRG] Merge Coincident or Equivalently Defined Items	
Label Type of item to be merge	Nodes 🗸
TOLER Range of coincidence	
GTOLER Solid model tolerance	
ACTION Merge items or select?	

Successivamente bisogna impedire gli spostamenti, in particolare le 3 traslazioni dell'elemento COMBINE (l'elemento possiede solo 3gdl).

Selezionare tutti nodi alla base e fare ALL DOF

Esercitazione N.11 (Soluzione)

Solution - Solve - Current LS: soluzione lineare

Risultati: z-component of displacement

Esercitazione N.11 (Risultati)

Risultati: von mises stress

Esercitazione N.11 (Risultati)

Risultati: selezionare solo gli elementi SHELL senza selezionare gli elementi COMBINE

Select - Entities - Element - By Attributes: type number 1

Esercitazione N.12 (Ottimizzazione di progetto)

Ottimizzare il progetto della mensola trapezoidale in acciaio riportata in figura, soggetta ad un carico verticale all'estremità, cercando di *ridurne il peso*, compatibilmente con le condizioni sottoelencate.

Esercitazione N.12 (Ottimizzazione di progetto)

New:

- Logica di ottimizzazione: variabili di progetto, variabili di stato, condizioni di vincolo, funzione obiettivo, algoritmi di minimizzazione.

- Il linguaggio di scripting orientato all'ottimizzazione: modello parametrizzato in funzione di variabili di progetto, di stato e funzione obiettivo.

- Comandi testuali per la manipolazione dei risultati in fase di post-processing.

-Uso delle funzionalità di ottimizzazione automatiche nei codici agli elementi finiti.

Esercitazione N.12 (Ottimizzazione di progetto)

Importazione del modello già realizzato tramite il file: mensolapara.txt

Tipologia del problema: stato di tensione piana, elemento utilizzato PLANE42

Esercitazione N.12 (Introduzione)

ANSYS è in grado di **ottimizzare automaticamente le variabili di progetto** al fine di ottenere il migliore risultato per la progettazione.

La logica che segue il programma per il processo di ottimizzazione è la seguente:

1) Definizione delle variabili di progetto: nel nostro caso Hi, Hj, b

- 2) Definizione della funzione obiettivo: funzione scalare delle variabili di progetto. Nel nostro caso è rappresentata dal volume da minimizzare f(Hi, Hj, b, ecc.)
- **3) Definizione delle funzioni di stato:** condizioni di vincolo del sistema $g(\sigma_{eq}, Y_{MAX})$ Nel nostro caso sono i valori massimi della sigma eq. e della freccia massima:

 $\sigma_{\rm eq}$ < 400 MPa Y_{MAX} < 0,005 m

Esercitazione N.12 (Ottimizzazione: es_12_ottimizzazione.lgw)

File di ottimizzazione contenente la modellazione parametrica (parte 1)

```
FINISH
 2
    /CLEAR
 3
    !* Replace current parameter set with these parameters
 4
    PARRES, NEW
 5
 6
 7
    FINISH
 8
    /PREP7
 9
10
    ET, 1, PLANE42
11
12
    MPTEMP,,,,,,,,
13
   MPTEMP, 1, 0
14
   MPDATA, EX, 1,, 200e9
15
16
   MPDATA, PRXY, 1,, 0.3
    K,1,0,-Hi/2,0
17
18 K,2,L,-Hj/2,0
19 K,3,L,Hj/2,0
    K,4,0,Hi/2,0
20
21
   LSTR, 1,
22
                         2
23 LSTR, 2,
                         3
   LSTR, 3,
                         4
24
25
  LSTR,
                4,
                         1
```

Esercitazione N.12 (Ottimizzazione: es_12_ottimizzazione.lgw)

File di ottimizzazione contenente la modellazione parametrica (parte 2)

26	
27	AL,ALL
28	AESIZE, ALL, Hj/8,
29	MSHKEY,1
30	AMESH, ALL
31	MSHKEY,0
32	
33	DL,4, ,ALL,
34	
35	p=F/b
36	FK,2,FY,-p/2
37	FK,3,FY,-p/2
38	
39	FINISH
40	/SOL
41	SOLVE

Esercitazione N.12 (Ottimizzazione: es_12_ottimizzazione.lgw)

File di ottimizzazione contenente la modellazione parametrica (parte 3):

```
42
43
    FINISH
44
    /POST1
45
    PLNSOL, S,EQV, 0,1.0
46
    !* prende il valore max dell'ultimo grafico plottato e lo mette nella variabile SQMAX
47
48
    *GET, SQMAX, PLNSOL, 0, MAX
49
    !* prende il valore della freccia massima nel nodo imposto (coordinate) e direzione UY
50
51
    *GET, YMAX, NODE, NODE (L, 0, 0), U, Y
52
    !* inverto la grandezza la UY è negativa
53
54
    XAMY-=XAMY
55
56
    vol=(Hi+Hj)/2*L*b
57
    PARSAVE, ALL
58
```

Esercitazione N.12 (Ottimizzazione: es_12_variabili.lgw)

File contenente le variabili di progetto aggiornate durante i cicli di ottimizzazione.

1	FINISH
2	/CLEAR
3	
4	Hi=0.1
5	Hj=0.05
6	L=0.4
7	b=0.07
8	F=50000
9	
10	!* salva in un file tutte le variabili d'ambiente
11	PARSAVE, ALL
12	
Scegliere il file da richiamare nell'ottimizzazione:
 Design Opt – Analysis File - Assign

Assign Analysis File			×
[OPANL] Assign Analysis file	es_12_ottimizzazione.l	gw	Browse
ОК	Cancel	Help	

- 2) Definire le variabili di progetto: Design Opt – Design variables – Add
 - Inserire Hi, Hj, b con i loro vincoli:

```
Hi = max 0.1
Hj = max 0.05
b = min 0.03
```

▲ Define a Design Variable	X
[OPVAR] Define a Design Variable	
NAME Parameter name	B F HI HJ L P SQMAX VOL YMAX
MIN Minimum value MAX Maximum value TOLER Convergence tolerance	B 0.03
OK Apply Cancel	Help

			-	~
3) Definire le variabili di stato:		A Define a State Variable		
,		[OPVAR] Define a State Variable		
Design Opt – State Variables		NAME Parameter name		B F HI
SQMAX = 400e6 Pa				HJ L P
YMAX = 0.005 m				VOL YMAX
				SOMAX
1) Definire funzione obiettivo:				Semon
Design Opt Objective		MIN Lower limit (blnk=none)		
Design Opt – Objective		MAX Upper limit (blnk=none)		400e6
Variabile da minimizzare:		TOLER Feasibility tolerance		
	▲ Define Obj	ective Function		
	[OPVAR] Def	ine Objective Function		Help
volume v	NAME Para	meter name	B	
			н	
			HJ L P SQMAX	
			YMAX	
			VOL	1.
	TOLER Com	vergence tolerance		
	TOLER COM			
		OK Cancel	Help	

5) Definire algoritmo di soluzione:

Design Opt -	- Method	Tool:	First	Order
--------------	----------	-------	-------	-------

Bisogna indicare un algoritmo da utilizzare per minimizzare il volume.

First-Order: trova un minimo locale, il più vicino alla soluzione di partenza, ma bisogna partire da una soluzione possibilmente già ottimizzata.

▲ Specify Optimization Method	×
[OPTYPE] Specify Optimization Method/Tool	
MNAME Select Method/Tool	
	O Single Run
	C Random Designs
	C Factorial
	C Gradient
	O DV Sweeps
	C Sub-Problem
	First-Order
	O User Optimizer
OK Cancel	Help

6) Calcolo soluzione ottimizzata: Design Opt – RUN	Scalar Parameters
STEP=1 SUB =1 TIME=1 SEQV (AVG) DMX =.004569 SMN =.110E+07 SMX =.398E+09	Items B = 5.401181517E-02 F = 50000 HI = 7.732972483E-02 HJ = 3.511792937E-02 L = 0.4 P = 925723.378 SQMAX = 398460128 VOL = 1.214700383E-03 YMAX = 4.541915764E-03 Selection
A_MNX	

7) Mostrare i risultati ottenuti nei vari tentativi di ottimizzazione: Design Sets - List - All sets

Esercitazione N.13 (Analisi modale e risposta dinamica)

Individuare le frequenze proprie e i corrispondenti modi di vibrazione della trave a mensola rastremata riportata in figura. Si studi inoltre la risposta nel tempo della struttura a seguito dell'applicazione di un carico impulsivo all'estremo libero con direzione a piacere.

Dati geometrici:

$$H_i = 0.08 m$$

 $b_i = 0.04 m$
 $H_j = 0.04 m$
 $b_j = 0.02 m$
 $L = 0.6 m$
 $s_1 = 0.002 m$ (spessore ali)
 $s_2 = 0.0015 m$ (spessore anima)

Dati materiale:

E= 200 GPa v= 0.3

Esercitazione N.13 (Analisi modale e risposta dinamica)

New:

- Modellazione di travi e in generale di strutture scatolate con elementi shell.

- Analisi modale: considerazioni generali, indicazioni sull'impostazione dei parametri e sulla scelta degli algoritmi del solutore, individuazione delle frequenze proprie e dei corrispondenti modi di vibrazione. Visualizzazione grafica dei modi in fase di postprocessing.

- Analisi di tipo transiente, considerazioni generali, applicazione carichi variabili nel tempo o impulsivi, indicazioni sull'impostazione dei parametri e sulla scelta degli algoritmi del solutore, inclusione degli effetti dinamici, studio della risposta della struttura nel tempo. Visualizzazione delle principali grandezze in una analisi di tipo transiente: time history post-processing.

- Considerazioni sulla strategia di discretizzazione e sulla scelta del passo di integrazione.

Esercitazione N.13 (Modellazione)

Esercitazione N.13 (Modellazione)

Element Type: SHELL181

Real Constant: bisogna impostare due differenti spessori per l'anima e la piattabanda della trave, quindi sono necessari due set di costanti: Set 1= biattabanda Set 2= anima

Materiale: acciaio, lineare-elastico-isotropo + densità materiale per l'analisi modale

Geometria: bisogna creare le aree come in figura e poi unirle con il comando GLUE. Per duplicare le aree simmetriche si può usare il comando: Preproc – Modelling – Reflect – Areas

Meshing: assegnare i set di costanti alla singole aree.

Mesh: viene impostata una mesh uniforme su tutte le aree di 0.01 m La finezza della mesh dipende da quanti modi di vibrazione si vogliono visualizzare: per vedere i modi più elevati è necessaria una mesh più fitta, finché i modi e le frequenze proprie calcolate con l'analisi modale non si stabilizzano.

Vincoli: si bloccano tutti i gradi di libertà (ALL DOF) sulle linee dell'incastro della trave.

Esercitazione N.13 (Analisi MODALE)

Impostazione dell'analisi modale nel solutore:
 Solution - Analysis Type - New Analysis: Modal

▲ New Analysis		×	
[ANTYPE] Type of analysis			
		C Static	
		 Modal 	
		C Harmonic	
		C Transient	
		C Spectrum	
		C Eigen Buckling	
		C Substructuring/CMS	
ОК	Cancel	Help	

Esercitazione N.13 (Analisi MODALE)

2) Impostare il tipo di analisi modale: Solution - Analysis Type - Analysis Options: Block Lanczos

▲ Modal Analysis		
[MODOPT] Mode extraction method		
	Block Lanczos	
	O PCG Lanczos	Numero di modi da visualizzare
	C Reduced	
	O Unsymmetric	
	O Damped	
	O QR Damped	
	C Supernode	
No. of modes to extract	10	
(must be specified for all methods except the Reduced me	thod)	Numero di modi da espandere
(must be specified for all methods except the Reduced me [MXPAND]	thod)	Numero di modi da espandere
(must be specified for all methods except the Reduced me [MXPAND] Expand mode shapes	thod)	Numero di modi da espandere
(must be specified for all methods except the Reduced me [MXPAND] Expand mode shapes NMODE No. of modes to expand	thod) Ves 10	Numero di modi da espandere
(must be specified for all methods except the Reduced me [MXPAND] Expand mode shapes NMODE No. of modes to expand Elcalc Calculate elem results?	thod) Ves 10 No	Numero di modi da espandere
(must be specified for all methods except the Reduced me [MXPAND] Expand mode shapes NMODE No. of modes to expand Elcalc Calculate elem results? [LUMPM] Use lumped mass approx?	thod) Ves 10 No No	Numero di modi da espandere
(must be specified for all methods except the Reduced me [MXPAND] Expand mode shapes NMODE No. of modes to expand Elcalc Calculate elem results? [LUMPM] Use lumped mass approx? [PSTRES] Incl prestress effects?	thod) Ves 10 No No No No	Numero di modi da espandere

Esercitazione N.13 (Analisi MODALE)

3) Successivamente si avrà la seguente schermata dove è possibile impostare eventuali limiti sulle frequenze da visualizzare nell'analisi:

A Block Lanczos Method	x			
[MODOPT] Options for Block Lanczos Modal Analysis				
FREQB Start Freq (initial shift) FREQE End Frequency	0			
Nrmkey Normalize mode shapes	To mass matrix 🔹			
OK Cancel	Help			

4) Soluzione: Solution – Solve – Current LS

Esercitazione N.13 (Analisi MODALE: Risultati)

5) Visualizzazione frequenze proprie: General Postproc - Results Summary

xolololok	INDEX OF D	ata sets on re	SULTS FIL	E xotototok
SET 2 3 4 5 6 7 8 9 10	TIHE/FREQ 72.275 138.18 280.42 338.31 464.25 686.24 909.83 997.09 1061.4 1156.5	LOAD STEP 1 1 1 1 1 1 1 1 1 1 1	SUBSTEP 1 2 3 4 5 6 7 8 9 10	CUHULATIVE 1 2 3 4 5 6 7 8 9 10

Esercitazione N.13 (Analisi MODALE: Risultati)

6) Per visualizzare i modi di vibrazione associati alle diverse frequenze:
 General Postproc – Read Results – First Set (scelgo il 1° modo di vibrazione)

Per vedere l'animazione del modo di vibrazione: Plotctrl - Animate - Mode Shape

Infine per visualizzare i modi di vibrazione successivi: General Postproc – Read Results – Next Set (ecc...)

La **risposta di un sistema** soggetto ad un carico dinamico è una combinazione dei vari modi di vibrazione, dipende dai modi che vengono eccitati, cioè da come viene sollecitata nel complesso la struttura. Nel nostro caso si ha un carico impulsivo orizzontale sull'estremità della trave.

NB: conviene fare sempre un analisi modale prima dell'analisi dinamica per analizzare le possibili risposte della struttura.

Logica risoluzione sistema dinamico

La soluzione avviene sempre per passi, il programma risolve una serie di problemi statici all'avanzare del tempo: si tiene conto delle inerzie e degli smorzamenti.

E' necessario scegliere il passo temporale di avanzamento della soluzione: se il problema è lineare il Δt dipende dalla risposta che si vuole osservare:

Algoritmo di Newmark: $\Delta t = < 1/(20*f)$

Più è alta la frequenza che si vuole osservare e più bisogna abbassare il Δt : è necessario quindi capire a priori quali sono le frequenze di interesse per poter scegliere il Δt .

Come applicare un carico arbitrario nel tempo (metodo più semplice)

Per applicare un carico arbitrario nel tempo bisogna definire una serie di **Load Step**. I Load Step sono una combinazione di carichi e vincoli. Una volta definiti e salvati si dice al programma di risolverli in successione.

In particolare bisogna dire ad ANSYS il valore del carico ed il tempo trascorso al termine del Load Step. Inoltre bisogna definire se il carico è di tipo **Ramped** (lineare) o **Stepped** (costante): in questo modo è possibile approssimare un carico arbitrario nel tempo.

Schematizzazione carico impulsivo

Bisogna applicare una forza per un certo tempo e successivamente rimuoverla per osservare cosa accade in un certo intervallo di tempo successivo.

Il primo intervallo di tempo è quello dell'impulso vero e proprio con un carico definito, mentre il secondo intervallo di tempo corrisponderà al tempo di osservazione della struttura mentre vibra: ad esso sarà assegnato un carico nullo.

Nel nostro caso si vogliono osservare i primi due modi di vibrazione sul piano orizzontale: si vogliono cioè osservare il 1°modo fino a 72Hz e poi il 4°modo a 338Hz, cioè i modi che hanno una componente orizzontale.

Quindi per osservare la risposta dinamica della struttura bisogna osservare le Frequenze almeno fino a 338Hz.

Il passo di avanzamento temporale che è in grado di cogliere frequenze di quell'ordine è dato dalla relazione:

 $\Delta t = < 1/(20*f) = 1/(20*338)$

xotototok	INDEX OF DAT	'A Sets on Re	SULTS FIL	E xolodolok
SET 1 7 2 1 3 2 4 3 5 4 6 6 7 9 8 9 9 1 10 1	TIME/FREQ 2.275 38.18 80.42 38.31 164.25 86.24 09.83 197.09 061.4 156.5	LOAD STEP 1 1 1 1 1 1 1 1 1 1 1	SUBSTEP 1 2 3 4 5 6 7 8 9 10	CUHULATIVE 1 2 3 4 5 6 7 8 9 10

Il Δt corrisponde al passo in cui vengono trovate le singole soluzioni statiche definite dai Load Step.

Stesso discorso vale per l'impulso. Se bisogna eccitare fino a frequenze di 338Hz l'impulso deve avere una durata al massimo di $\Delta t_1 = < 1/(20*f) = 1/(20*338)$ Il numero di sottopassi in cui bisogna dividere il Δt_1 è soltanto 1.

Successivamente bisogna rimuovere il carico ed andare a visualizzare la risposta per un tempo più lungo della durata dell'impulso Δt_2 .

Quanto deve durare il Δt_2 ?

Se il tempo è troppo lungo, l'analisi transitoria è lunga da risolvere

Se il 1°modo è a 72Hz, vuol dire che la struttura vibrerà con il primo modo 72 volte al secondo, quindi se voglio vedere ad esempio 3 oscillazioni, il tempo finale sarà:

 $\Delta \dagger 2 = 3^*(1/72)$

In realtà l'oscillazione sul piano orizzontale sarà una composizione del 1° e del 4° modo.

1) Cambio del tipo di analisi, da Modale a Transitoria

Solution – Analysis Type - New Analysis: Transiet

New Analysis		
[ANTYPE] Type of analysis		
		O Static
		C Modal
		© Harmonic
		• Transient
		C Spectrum
		O Eigen Buckling
		O Substructuring/CMS
ОК	Cancel	Help

Ci sono tre modi di soluzione:

Full: risolve il sistema dinamico completo, è lento se si usa per sistemi complessi
Reduce*: considera solo i gradi di libertà importanti per la dinamica
Mode Superpos'n*: trova la risposta dinamica considerando la composizione dei modi

(*) gli ultimi due hanno limitazioni, si usano di solito solo per problemi lineari

▲ Transient Analysis	X	
[TRNOPT] Solution method		
	Full	
	C Reduced	
	C Mode Superpos'n	
[LUMPM] Use lumped mass approx?	∏ No	
OK Cancel	Help	

2) Definizione dei Load Step:

Descrizione della storia di carico nel tempo

Prima combinazione di carico (impulso):

- Applicazione del carico
- Impostazione del tempo di durata del carico
- Impostazione del numero di sottopassi per arrivare al tempo finale t₁
- Salvataggio Load Step 1

Seconda condizione di carico (osservazione):

- Rimozione del carico
- Impostazione del tempo t₂ di osservazione delle oscillazioni
- Si divide il t₂ in certo numero di sottopassi
- Salvataggio Load Step 2

Prima combinazione di carico (impulso):

Impostazione tempo finale t1 e numero di sottopassi: Solution – Analysis Type - Sol'n Controls

Applicazione del carico:

Solution - Define Loads - Apply - Structural – Force/Moment - On Keypoints

	XXXXXXXXX	
	Apply F/M on KPs	
HAXXXX	[FK] Apply Force/Moment on Keypoints	
TTXXXXX	Lab Direction of force/mom	FX 🔻
HAR XXXXX	Apply as	Constant value 🔻
	If Constant value then:	
CONSTRUCTION OF THE OWNER OWNER OF THE OWNER OWNE	VALUE Force/moment value	100/6
N.S.T.		
	OK Apply Cance	l Help

Salvataggio prima combinazione dei Load Step creata.

Solution - Load Step Opts - Write LS File: scrivere 1 per il primo Load Step

Attraverso Read LS File posso ricaricare in ogni momento le condizioni di carico e vincoli impostate

Seconda combinazione di carico (osservazione)

Impostazione tempo finale t₂ e numero sottopassi: Solution – Analysis Type - Sol'n controls

Solution – Analysis Type - Sol'n controls

Bisogna salvare più sottopassi per vedere l'andamento della soluzione nel tempo: vengono salvati al massimo 1000 substeps

Rimozione del carico: Solution - Define Loads – Delete - Structural – Force/Moment - On Keypoints: ALL

	HIXXXXXXII
	▲ Delete F/M on KPs
	[FKDELE] Delete Force/Moment on Keypoints
4	Lab Force/moment to be deleted
	OK Apply Cancel

Salvataggio prima combinazione dei Load Step creata:

Solution - Load Step Opts - Write LS File: scrivere 2 per il primo Load Step

N W	rite Load Step File			x
[LSWI LSNU	RITE] Write Load S M Load step file r	Step File (Jobname.S number n	in)	2
	ОК	Apply	Cancel	Help

3) Soluzione del problema

Solve - From LS File:

bisogna indicare il Load Step iniziale, quello finale e l'incremento

▲ Solve Load Step Files	
[LSSOLVE] Solve by Reading Data from Load Step (LS) Files	
LSMIN Starting LS file number	1
LSMAX Ending LS file number	2
LSINC File number increment	1
OK Cancel	Help

Solution is Done è relativo sempre ad un singolo Load Step.

L'avanzamento della soluzione dei singoli Load Step si vede nella finestra DOS di ANSYS

4) Analisi della risposta dinamica: la soluzione è stata salvata ad ogni sottopasso

General Postproc - Read Results – Next Step Si vede la soluzione ad ogni sottopasso. Nel nostro caso sono 281, procedura lunga.

General Postproc - Read Results – By Time/Freq Si posso indicare il tempo e la frequenza e vedere la relativa la soluzione.

[SET] [SUBSET] [APPEND]	
Read results for	Entire model 🗨
TIME Value of time or freq	(3/72)/2
LSTEP Results at or near TIME	At TIME value
FACT Scale factor	1
ANGLE Circumferential location	

□ General Postproc
 □ Data & File Opts
 □ Results Summary
 □ Read Results
 □ First Set
 □ Next Set
 □ Previous Set
 □ Last Set
 □ By Pick
 □ By Load Step
 □ By Set Number
 □ FLOTRAN 2.1A

Soluzione a metà del tempo

Visualizzazione delle deformata al tempo impostato

Visualizzazione Von Mises al tempo impostato

Esercitazione N.13 (Analisi Transitoria/Dinamica) Per vedere la risposta nel tempo: Numero di Frame Plotcrl - Animate - Overtime Intervallo: dal ▲ Animate Over Time primo al secondo [ANTIME] Animate over time (interpolation of results) Load Step Number of animination frames 20 Model result data Current Load Stp Coad Step Range C Time Range Grandezza da Range Minimum, Maximum 2 1 mappare: UX Auto contour scaling 🔽 On Animation time delay (sec) 0.5 [PLDI, PLNS, PLVE, PLES, PLVFRC] Contour data for animation Use Last Display ormed Shape Translation UX DOF solution = Stress UY Strain-total U7 Energy USUM Strain ener dens Strain-elastic Deformed Shape OK Cancel Help

Andamento della grandezza in esame in un punto particolare nel tempo:

Time History Postproc

Selezionare il nodo in cui vedere l'andamento della grandezza UX, poi plottare il risultato con GRAPH DATA _____

▲ Time History Variables - file.	rst	
File Help		
	None	
		- 1
Graph Data		
Name Element	Node	R€
TIME		Tir
UX_2	67	X-

Andamento della UX nel nodo selezionato: 3 oscillazioni

Materiali Ortotropi = Compositi

Hanno diverse caratteristiche a seconda della direzione della sollecitazione.

Material Models - Structural - Liner - Elastic - Orthotropic

Linear Orthotropic Properties for Material Number 1			
Linear Orthotropic Material Properties for Material Number 1			
Choose Poisson's Ratio			
T1			
Temperatures			
EX			
EY			
EZ			
PRXY			
PRYZ			
PRXZ			
GXY			
GYZ			
GXZ			
Add Temperature Delete Temperature	Graph		
OK Cancel	Help		

Bisogna orientare il sistema di riferimento locale degli elementi della mesh, nello stesso modo del sistema di riferimento globale a cui si sono assegnate le proprietà del materiale ortotropo nelle diverse direzioni.

Per visualizzare il sistema di riferimento locale degli elementi delle mesh:

PlotCtrls - Symbols - ESYS Nodal coordinate system

NDIR Nodal coordinate system	C Off
ESYS Element coordinate sys	🔽 On
LDIV Line element divisions	Meshed 💌

Bisogna ora orientare il sistema locale nello stesso modo del sistema globale.

Per fare questo bisogna creare un nuovo sistema di riferimento orientato come il globale ed associarlo agli elementi della mesh.

WorkPlane - Local Coordinate System - Create Local CS - At Wp Origin

Numero del nuovo sistema riferimento

Bisogna assegnare il sistema di riferimento creato agli elementi.

Meshing - Mesh Attributes - Picked Areas

∧ Area Attributes	
[AATT] Assign Attributes to All Selected Areas	
MAT Material number	None defined 💌
REAL Real constant set number	None defined 💌
TYPE Element type number	1 SHELL181 💌
ESYS Element coordinate sys	
SECT Element section	None define
OK Apply	Cancel Help

Selezionare il sistema di riferimento

Bisogna ora rifare la mesh ed i nuovi elementi avranno gli assi di riferimento locali orientati come quello globale a cui sono state assegnate le proprietà del materiale.

